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Abstract We construct a new subfactor planar algebra, and as a corollary a
new subfactor, with the ‘extended Haagerup’ principal graph pair. This com-
pletes the classification of irreducible amenable subfactors with index in the
range (4, 3 +

√
3) , which was initiated by Haagerup in 1993. We prove that the

subfactor planar algebra with these principal graphs is unique. We give a skein
theoretic description, and a description as a subalgebra generated by a certain
element in the graph planar algebra of its principal graph. In the skein theoretic
description there is an explicit algorithm for evaluating closed diagrams. This
evaluation algorithm is unusual because intermediate steps may increase the
number of generators in a diagram.
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1 Introduction

A subfactor is an inclusion N ⊂ M of von Neumann algebras with trivial center.
The theory of subfactors can be thought of as a nonabelian version of Galois theory,
and has had many applications in operator algebras, quantum algebra, and knot
theory. For example, the construction of a new finite depth subfactor, as in this
paper, also yields two new fusion categories (by taking the even parts) and a new
3-dimensional TQFT (via the Ocneanu-Turaev-Viro construction [61, 47, 50]).

A subfactor N ⊂ M has three key invariants. From strongest to weakest, they are:
the standard invariant (which captures all information about “basic” bimodules
over M and N ), the principal and dual principal graphs (which together describe
the fusion rules for these basic bimodules), and the index (which is a real number
measuring the “size” of the basic bimodules). We will use the axiomatization of the
standard invariant as a subfactor planar algebra, which is due to Jones [26]. Other
axiomatizations include Ocneanu’s paragroups [46] and Popa’s λ-lattices [55]. (For
readers more familiar with tensor categories, these three approaches are analogous
to the diagram calculus [50, 57, 35], basic 6j symbols [60, Chapter 5], and towers
of endomorphism algebras [64], respectively.) The standard invariant is a complete
invariant of amenable subfactors of the hyperfinite II1 factor [52, 54].

The index of a subfactor N ⊂M must lie in the set{
4 cos2

(π
n

) ∣∣∣ n ≥ 3
}
∪ [4,∞],
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and all numbers in this set can be realized as the index of a subfactor [27]. Early
work on classifying subfactors of “small index” concentrated on the case of index
less than 4. The principal graphs of these subfactors are exactly the Dynkin di-
agrams An , D2n , E6 and E8 . Furthermore there is exactly one subfactor planar
algebra with principal graph An or D2n and there is exactly one pair of complex
conjugate subfactor planar algebras with principal graph E6 or E8 . (See [46] for
the outline of this result, and [5, 22, 23, 38] for more details.) The story of the corre-
sponding classification for index equal to 4 is outlined in [54, p. 231]. In this case,
the principal graph must be an affine Dynkin diagram. For some principal graphs
there are multiple non-conjugate subfactors with the same principal graph, which
are distinguished by homological data.

The classification of subfactors of “small index” greater than 4 was initiated by
Haagerup [18]. His main result is a list of all possible pairs of principal graphs of ir-
reducible subfactors of index larger than 4 but smaller than 3 +

√
3. Here we begin

to see subfactors whose principal graph is different from its dual principal graph.
If Γ refers to a pair of principal graphs and we need to refer to one individually, we
will use the notation Γp and Γd . Any subfactor N ⊂M has a dual given by the ba-
sic construction M ⊂M1 . Taking duals reverses the shading on the planar algebra,
switches the principal and dual principal graphs, and preserves index. Haagerup’s
list is as follows (we list each pair once).

• (A∞, A∞),

• the infinite familyHn =

 ,



n∈N

,

which has index(H0) = 5+
√

13
2 , index(H1) the largest root of x3−8x2+17x−5,

and index(Hn) monotonically increasing with n, converging to the real root
of x3 − 6x2 + 8x − 4, (thus index(H0) ≈ 4.30278, index(H1) ≈ 4.37720, and
limn index(Hn) ≈ 4.38298),

• the infinite familyBn =

 ,



n∈N

,

which has index(B0) = 7+
√

5
2 , and index(Bn) monotonically increasing in n,

converging to the real root of x3 − 8x2 + 19x− 16, (thus index(B0) ≈ 4.61803,
and limn index(Bn) ≈ 4.65897),

• one more pair of graphs,

AH =

 ,

 ,

which has index 5+
√

17
2 ≈ 4.56155.
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Haagerup’s paper announces this result up to index 3 +
√

3 ≈ 4.73205, but only
proves it up to index 3 +

√
2 ≈ 4.41421; this includes all of the graphs Hn , but

none of the graphs Bn or AH . Haagerup’s proof of the full result has not yet
appeared. In work in progress, Jones, Morrison, Penneys, Peters, and Snyder have
independently confirmed his result (following Haagerup’s outline except at one
point using a result from [31]), and have extended his techniques to give a partial
result up to index 5 (see [?, 42, 25, 49]). In this paper, we will only rely on the part
of Haagerup’s classification that has appeared in print.

Haagerup’s original result did not specify which of the possible principal graphs
are actually realized. Considerable progress has since been made in this direction.
Asaeda and Haagerup [2] proved the existence and uniqueness of a subfactor pla-
nar algebra whose principal graphs are H0 (called the Haagerup subfactor), and
a subfactor planar algebra for AH (called the Asaeda-Haagerup subfactor). Izumi
[24] gave an alternate construction of the Haagerup subfactor. Bisch [8] showed
none of the graphs Bn can be principal graphs because they give inconsistent fu-
sion rules. Asaeda [1] and Asaeda-Yasuda [3] proved that Hn is not a principal
graph for n ≥ 2. To do this, they showed that the index is not a cyclotomic integer,
and then appealed to a result of Etingof, Nikshych and Ostrik [15], which in turn is
proved by reduction to the case of modular categories, where it was proved in the
context of rational conformal field theories by Coste–Gannon [12] using a result of
de Boere–Goeree [13].

The main result of our paper is

Theorem 3.10 There is a subfactor planar algebra with principal graphs H1 .

In addition, we prove in Theorem 3.9 that this planar algebra is the only one with
these principal graphs. This result completes the classification of all subfactor pla-
nar algebras up to index 3 +

√
3:

Corollary ([18], [2], [8], [3], and Theorem 3.10) The only irreducible subfactor
planar algebras with index in the range (4, 3 +

√
3) are

• the non-amenable Temperley-Lieb planar algebra at every index in this range,
with principal graphs (A∞, A∞),

• the Haagerup planar algebra with principal graphs H0 , and its dual,

• the Haagerup-Asaeda planar algebra with principal graphs AH , and its dual,
and

• the extended Haagerup planar algebra with principal graphs H1 , and its
dual.

By Popa’s classification [52] the latter three pairs can each be realized uniquely as
the standard invariant of a subfactor of the hyperfinite II1 factor. This gives a
complete classification of amenable subfactors of the hyperfinite II1 factor with
index between (4, 3 +

√
3). The non-amenable case remains open because it is un-

known for which indices Temperley-Lieb can be realized as the standard invariant
of the hyperfinite II1 factor, nor in how many ways it can be realized (see [53, 6]
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for some work in this direction). Furthermore, there remain many interesting ques-
tions about small index subfactors of arbitrary factors.

It was already expected that the extended Haagerup subfactor should exist, thanks
to approximate numerical evidence coming from computations by Ikeda [21]. We
note that although our construction relies on a computation of the traces of a few
large matrices, this computation consists of exact arithmetic in a number field, and
is a very different calculation from the one Ikeda did numerically.

The search for small index subfactors has so far produced the three pairs of “spo-
radic” examples: the Haagerup, Asaeda-Haagerup and extended Haagerup subfac-
tors. These are some of the very few known subfactors that do not seem to fit into
the frameworks of groups, quantum groups, or conformal field theory [20]. (See
also a generalization of the Haagerup subfactor due to Izumi [24, Example 7.2]).
You might think of them as analogs of the exceptional simple Lie algebras, or of the
sporadic finite simple groups. (Without a good extension theory, it is not yet clear
what “simple” should mean in this context.)

In this paper, we study the extended Haagerup planar algebra. We construct the ex-
tended Haagerup planar algebra by locating it inside the graph planar algebra [29]
of its principal graph. By a result of Jones–Penneys [45] (generalized in [33]) every
subfactor planar algebra occurs in this way. We find the right planar subalgebra by
following a recipe outlined by Jones [29, 31] and further developed by Peters [51],
who applied it to the Haagerup planar algebra.

We also give a presentation of the extended Haagerup planar algebra using a single
planar generator and explicit relations. We prove that the subalgebra of the graph
planar algebra contains an element also satisfying these relations. This is conve-
nient because different properties become more apparent in different descriptions
of the planar algebra. For example, the subalgebra of the graph planar algebra is
clearly non-trivial, which would be difficult to prove directly from the generators
and relations. In the other direction, in §5 we prove that our relations result in a
space of closed diagrams that is at most one dimensional, which would be difficult
to prove in the graph planar algebra setting.

In §2 we recall the definitions of planar algebras and graph planar algebras [26, 29].
We also set some notation for the graph planar algebra of Hp1 . In §3 we prove our
two main theorems, Theorems 3.9 and 3.10. Theorem 3.9, the uniqueness theorem,
says that for each k there is at most one subfactor planar algebra with principal
graphs Hk . Furthermore we give a skein theoretic description by generators and
relations of the unique candidate planar algebra. Theorem 3.10, the existence the-
orem, constructs a subfactor planar algebra with principal graphs H1 by realiz-
ing the skein theoretic planar algebra as a subalgebra of the graph planar algebra.
Proofs of several key results needed for the main existence and uniqueness argu-
ments are deferred to §4, §5, and §6. In particular, §4 describes an evaluation algo-
rithm that uses the skein theory to evaluate any closed diagram (Theorem 3.8). This
is crucial to our proofs of both existence and uniqueness and may be of broader in-
terest in quantum topology. This section can be read independently of the rest of
the paper. Section 5 consists of calculations of inner products using generators and
relations. Section 6 gives the description of the generator of our subfactor planar
algebra inside the graph planar algebra and verifies its properties. Appendix A
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gives the tensor product rules for the two fusion categories associated to the ex-
tended Haagerup subfactor.

Part of this work was done while Stephen Bigelow and Emily Peters were visiting
the University of Melbourne. Scott Morrison was at Microsoft Station Q and the
Miller Institute for Basic Research during this work. Emily Peters was supported
in part by NSF Grant DMS0401734 and a fellowship from Soroptimist International
and Noah Snyder was supported in part by RTG grant DMS-0354321 and in part by
an NSF Postdoctoral Fellowship. We would like to thank Vaughan Jones for many
useful discussions, and Yossi Farjoun for lessons on Newton’s method.

2 Background

2.1 Planar algebras

Planar algebras were defined in [26] and [29]. More general definitions have since
appeared elsewhere, but we only need the original notion of a shaded planar algebra,
which we sketch here. For further details see [29, §2], [26, §0], or [9].

Definition 2.1 A (shaded) planar tangle has an outer disk, a finite number of inner
disks, and a finite number of non-intersecting strings. A string can be either a
closed loop or an edge with endpoints on boundary circles. We require that there be
an even number of endpoints on each boundary circle, and a checkerboard shading
of the regions in the complement of the interior disks. We further require that
there be a marked point on the boundary of each disk, and that the inner disks are
ordered.

Two planar tangles are considered equal if they are isotopic (not necessarily rel
boundary).

Here is an example of a planar tangle.

2

1

?

?

3

? ?

Planar tangles can be composed by placing one planar tangle inside an interior
disk of another, lining up the marked points, and connecting endpoints of strands.
The numbers of endpoints and the shadings must match up appropriately. This
composition turns the collection of planar tangles into a colored operad.

Definition 2.2 A (shaded) planar algebra consists of
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• A family of vector spaces {V(n,±,)}n∈N , called the positive and negative n-box
spaces.

• For each planar tangle, a multilinear map Vn1,±1 ⊗ . . . ⊗ Vnk,±k → Vn0,±0

where ni is half the number of endpoints on the ith interior boundary circle,
n0 is half the number of endpoints on the outer boundary circle, and the
signs ± are positive (respectively negative) when the marked point on the
corresponding boundary circle is in an unshaded region (respectively shaded
region).

For example, the planar tangle above gives a map

V1,+ ⊗ V2,+ ⊗ V2,− → V3,+.

The linear map associated to a ‘radial’ tangle (with one inner disc, radial strings,
and matching marked points) must be the identity. We require that the action of
planar tangles be compatible with composition of planar tangles. In other words,
composition of planar tangles must correspond to the obvious composition of mul-
tilinear maps. In operadic language this says that a planar algebra is an algebra
over the operad of planar tangles.

We will refer to an element of Vn,± (and specifically Vn,+ , unless otherwise stated)
as an “n-box.”

We make frequent use of three families of planar tangles called multiplication, trace,
and tensor product, which are shown in Figure 1. “Multiplication” gives an asso-
ciative product Vn,± ⊗ Vn,± → Vn,± . “Trace” gives a map Vn,± → V0,± . “Tensor
product” gives an associative product Vm,± ⊗ Vn,± → Vm+n,± if m is even, or
Vm,± ⊗ Vn,∓ → Vm+n,± if m is odd.

. . .

. . .

. . .

1

2

?

?

?

, ? · · · ,

. . .

. . .

. . .

. . .

21 ???

Figure 1: The multiplication, trace, and tensor product tangles.

The (shaded or unshaded) empty diagrams can be thought of as elements of V0,± ,
since the ‘empty tangle’ induces a map from the empty tensor product C to the
space V0,± . If the space V0,± is one dimensional then we can identify it with C by
sending the empty diagram to one. In many other cases, we can make do with the
following.
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Definition 2.3 A partition function is a pair of linear maps

Z± : V0,± → C

that send the empty diagrams to 1.

In a planar algebra with a partition function, let

tr : Vn,± → C

denote the composition of the trace tangle with Z .

Sometimes we will need to refer simply to the action of the trace tangle, which we
denote tr0 : Vn,± → V0,± .

Notice that the above trace tangle is the “right trace.” There is also a “left trace”
where all the strands are connected around the left side.

Definition 2.4 A planar algebra with a partition function can be:

• Positive definite: There is an antilinear adjoint operation ∗ on each Vn,± , com-
patible with the adjoint operation on planar tangles given by reflection. The
sesquilinear form 〈x, y〉 = tr (xy∗) is positive definite.

• Spherical: The left trace

trl : V1,± → V0,∓
Z∓−−→ C

and the right trace

trr : V1,± → V0,±
Z±−−→ C

are equal.

The spherical property implies that the left and right traces are equal on every
Vn,± . Since every planar algebra we consider is spherical, we will usually ignore
the distinction between left and right trace.

Definition 2.5 A subfactor planar algebra is a positive definite spherical planar
algebra such that dimV0,+ = dimV0,− = 1 and dimVn,± <∞.

As a consequence of being spherical and having 1-dimensional 0-box spaces, sub-
factor planar algebras always have a well-defined modulus, as described below.

Definition 2.6 We say that the planar algebra has modulus d if the following rela-
tions hold.

= d · , = d · .

The principal graphs of a subfactor encode the fusion rules for the basic bimodules
NMM and MMN . The vertices of the principal graph are the isomorphism classes
of simple N -N and N -M bimodules that occur in tensor products of the basic bi-
modules. The edges give the decompositions of tensor products of simple bimod-
ules with the basic bimodule. The dual principal graph encodes similar informa-
tion, but for M -N and M -M bimodules. This definition is due to Connes [11] and
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Ocneanu [46], together with later work of Jones [32] that lets you replace the orig-
inal Hilbert space bimodules with algebraic bimodules, for example, ML

2(M)N
with MMN .

In the language of planar algebras, the basic bimodule is a single strand, and the
isomorphism classes of simple bimodules are equivalence classes of irreducible pro-
jections in the box spaces. For a more detailed description, see [43, §4.1].

Definition 2.7 A subfactor planar algebra P is irreducible if dimP1,+ = 1.

A subfactor planar algebra has finite depth if it has finitely many isomorphism
classes of irreducible projections, that is, finitely many vertices in the principal
graphs. [46, 52]

The following is well-known, and combines the results of [52] and [26].

Theorem 2.8 Finite depth finite index subfactors of the hyperfinite II1 factor are in
one-to-one correspondence with finite depth subfactor planar algebras. Irreducible
subfactors (those for which M is irreducible as an N -M bimodule) correspond to
irreducible subfactor planar algebras.

Proof Suppose we are given a subfactor N ⊂ M . The corresponding planar al-
gebra is constructed as follows. Let C be the 2-category of all bimodules that ap-
pear in the decomposition of some tensor product of alternating copies of M as
a N -M bimodule and M as a M -M bimodule. These are A-B bimodules for
A,B ∈ {M,N}, and form the 1-morphisms of C . Composition of 1-morphisms is
given by tensor product. The 2-morphisms of C are the intertwiners.

We can define duals in C by taking the contragradient bimodule, which interchanges
M as an N -M bimodule with M as an M -N bimodule. Now define the associated
planar algebra by

Pn,± = EndC

(⊗̂
n
M±

)
.

Here M± means M or M∗ , and
⊗̂

nM means M ⊗ M∗ ⊗ M ⊗ · · · ⊗ M± . The
action of tangles is via the usual interpretation of string diagrams as 2-morphisms
in a 2-category [35], with critical points interpreted as evaluation and coevaluation
maps.

The difficult direction is to recover a subfactor from a planar algebra. The proof
of this result was given in [52]. However in that paper, Popa uses towers of com-
mutants instead of tensor products of bimodules, and λ-lattices instead of planar
algebras. See [26] to translate from λ-lattices into planar algebras. See [7] and [32]
to translate from towers of commutants into tensor products of bimodules.

Remark. The above theorem says that a certain kind of subfactor is completely
characterized by its representation theory (that is, the bimodules). This can be
thought of as a subfactor version of the Dopplicher-Roberts theorem [14], or more
generally, of Tannaka-Krein type theorems [36].
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In general, given any extremal finite index subfactor of a II1 factor, the standard
invariant is a subfactor planar algebra. Several other reconstruction results have
been proved. Popa extended his results on finite depth subfactors to amenable sub-
factors of the hyperfinite II1 factor in [54]. The general situation for non-amenable
subfactors of the hyperfinite II1 factor is more complicated: some subfactor planar
algebras cannot be realized at all (an unpublished result of Popa’s, see [53]), while
others can be realized by a continuous family of different subfactors [10]. Further-
more, once you move beyond the hyperfinite II1 factor there are many new ques-
tions. On the one hand any subfactor planar algebra comes from a (canonically
constructed, but not necessarily unique) subfactor of the free group factor L(F∞)
[56, 34, 39, 17], while on the other hand there exist factors for which only the trivial
planar algebra can be realized as the standard invariant of a subfactor [62].

2.2 Temperley-Lieb

Everyone’s favorite example of a planar algebra is Temperley-Lieb. It was defined
(as an algebra) in [59], applied to subfactor theory in [27], and formulated diagram-
matically in [37]. The vector space TLn,± is spanned by non-crossing pairings of
2n points (where the ± depends on whether the marked point is in a shaded region
or unshaded region). These pairings are drawn as intervals in a disc, starting from
a marked point on the boundary. For example,

TL3,+ = span


?

,
?

,
?

,
?

,
?

 .

Planar tangles act on Temperley-Lieb elements “diagrammatically:” the inputs are
inserted into the inner disk, strings are smoothed out, and each loop is discarded
in exchange for a factor of d ∈ C. For example,

?

?  ?
 =

?

= d2

?

.

If d ∈ R we can introduce an antilinear involution ∗ by reflecting diagrams. If d ≥ 2
then Temperley-Lieb is a subfactor planar algebra. If d = 2 cos πn for n = 3, 4, 5, . . .
then we can take a certain quotient to obtain a subfactor planar algebra. The irre-
ducible projections in the Temperley-Lieb planar algebra are the Jones-Wenzl idem-
potents [28, 63].

Definition 2.9 The Jones-Wenzl idempotent f (n) ∈ TLn,± is characterized by

f (n) 6= 0

f (n)f (n) = f (n)

eif
(n) = f (n)ei = 0 for i = 1, 2, . . . , n− 1
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where e1, . . . , en−1 are the Jones projections

e1 =
1

d
. . . , e2 =

1

d
. . . , . . . , en−1 =

1

d
. . . .

The following gives a recursive definition of the Jones-Wenzl idempotents. We
should mention that the following pictures are drawn using rectangles instead of
disks, and the marked points are assumed to be on the left side of the rectangles
(including the implicit bounding rectangles). The quantum integers [n] = qn−q−n

q−q−1

which appear below are specialized at a value of q such that [2] = d.

Lemma 2.10 ([16])

f (k) = f (k−1) +
1

[k]

k−1∑
a=1

(−1)a+k[a]

a

f (k−1) .

Proof It is straightforward to check that the right hand side of this equation satis-
fies the characterizing relations of Definition 2.9.

We will also use the following more symmetrical version of the lemma.

Lemma 2.11

f (k) = f (k−1) +
1

[k][k − 1]

k−1∑
a,b=1

(−1)a+b+1[a][b]

a

b

f (k−2) .

Proof First apply Lemma 2.10, and then apply the vertically reflected version of
that lemma to all but the first term in the resulting expression.

We sometimes consider the complete expansion of a Jones-Wenzl idempotent into
a linear combination of Temperley-Lieb diagrams. Suppose β is a k -strand Tem-
perley-Lieb diagram. Let Coefff (k)(β) denote the coefficient of β in the expansion
of f (k) . Thus

f (k) =
∑

Coefff (k)(β)β,

where the sum is over all k -strand Temperley-Lieb diagrams β .

We will frequently state values of Coefff (k)(β) without giving the details of how
they are computed. A convenient formula for these values is given by Frenkel and
Khovanov in [16]. See also [41] for a detailed exposition, including a helpful exam-
ple at the end of §4 of that paper. A related formula was announced by Ocneanu
[48], and special cases of this were proved by Reznikoff [58].
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2.3 The graph planar algebra

In this section we define the graph planar algebra GPA(G) of a bipartite graph
G with a chosen base point, and recall some of its basic properties [29]. Except in
degenerate cases, this fails to be a subfactor planar algebra because dimGPA(G)0,+

and dimGPA(G)0,− are greater than 1. However, after specifying a certain parti-
tion function, all the other axioms for a subfactor planar algebra hold.

The box space GPA(G)n,± is the space of functionals on the set of loops on G that
have length 2n and are based at an even vertex in the case of GPA(G)n,+ , or an
odd vertex in the case of GPA(G)n,− .

Suppose T is a planar tangle with k inner disks, and f1, . . . , fk are functionals in
the appropriate spaces GPA(G)ni,±i . Then we will define T (f1, . . . , fk) as a certain
“weighted state sum.”

A state on T is an assignment of vertices of G to regions of T and edges of G to
strings of T , such that unshaded regions are assigned even vertices, shaded regions
are assigned odd vertices, and the edge assigned to the string between two regions
goes between the vertices assigned to those regions. In particular, a state for any
graph is uniquely specified by giving only the assignment of edges, and a state for
a simply laced graph is specified by giving only the assignment of vertices. Since
all the graphs we consider are simply laced, we typically specify states by giving
the assignment of vertices. The inner boundaries ∂i(σ) and outer boundary ∂0(σ)
of a state are the loops obtained by reading the edges assigned to strings clockwise
around the corresponding disk.

We define T (f1, . . . , fk) by describing its value on a loop `. This is given by the
following weighted state sum.

T (f1, . . . , fk)(`) =
∑
σ

c(T, σ) ·
∏

i=1,...,k

fi(∂i(σ)).

Here, the sum is over all states σ on G such that ∂0(σ) = `, and the weight c(T, σ)
is defined below.

To specify the weight c(T, σ), it helps to draw T in a certain standard form. Each
disk is drawn as a rectangle, with the same number of strands meeting the top and
bottom edges, no strands meeting the side edges, and the starred region on the left
side. The strands are drawn smoothly, with a finite number of local maxima and
minima. Then

c(T, σ) =
∏

t∈E(T )

√
dσ(tconvex)

dσ(tconcave)
,

where E(T ) is the set of local maxima and minima of the strands of T , dv is the
Perron-Frobenius dimension of the vertex v , and tconvex and tconcave are respec-
tively the regions on the convex and concave sides of t. The Perron-Frobenius
dimension of a vertex is the corresponding entry in the Perron-Frobenius eigenvec-
tor of the adjacency matrix. This is the largest-eigenvalue eigenvector, normalized
so the Perron-Frobenius dimension of the base point is 1, and its entries are strictly
positive.

It is now easy to check that this planar algebra has modulus d, the Perron-Frobenius
dimension of G.

11



Example 1 Fix G, a simply laced graph. Consider

ρ8 = ,

the “two-click” rotation on 8-boxes, already drawn in standard form, and a loop
γ = γ1γ2 . . . γ16γ1 . Then

ρ(f)(γ) = f

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

γ9γ10γ11γ12γ13γ14γ15γ16

=

√
dγ3dγ11
dγ1dγ9

f(γ3 . . . γ16γ1γ2γ3).

It is a general fact about the Perron-Frobenius dimensions of bipartite graphs that∑
even vertices v d

2
v =

∑
odd vertices v d

2
v . Call this number I , the global index. We use

the partition function

Z :GPA0,± → C

f 7→
∑
v

f(v)
d2
v

I

and the involution ∗ given by reversing loops:

f∗(γ1γ2γ3 . . . γnγ1) := f(γ1γn . . . γ3γ2γ1).

Proposition 2.12 For any bipartite graph G with base point the planar algebra
with partition function and involution (GPA(G), Z, ∗) is a spherical positive defi-
nite planar algebra whose modulus is the Perron-Frobenius eigenvalue for G.

Proof This is due to [29], but we recall the easy details here. The inner prod-
uct is positive definite, because the basis of Kronecker-delta functionals on loops

{δγ}γ∈Γ2k
is an orthogonal basis and 〈δγ , δγ〉 =

dγ1dγk+1

I > 0.
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Sphericality is a straightforward computation:

trl(X) = Z

 X

 =Z

 ∑
edges e from even

to odd vertices

X(e)
ds(e)

dt(e)
· δt(e)


=

∑
edges e from even

to odd vertices

X(e)ds(e)
dt(e)

I

and

trr(X) = Z

 X

 =Z

 ∑
edges e from even

to odd vertices

X(e)
dt(e)

ds(e)
· δs(e)


=

∑
edges e from even

to odd vertices

X(e)dt(e)
ds(e)

I
,

where s(e) and t(e) are respectively the even and odd vertices of the edge e.

The main reason for interest in graph planar algebras is the following result from
[45, 33].

Theorem 2.13 Given a finite depth subfactor planar algebra P with principal graph
Γ there is an injective map of planar algebras

P ↪→ GPA(Γ).

This theorem assures us that if we believe in the existence of the extended Haagerup
subfactor, and have enough perseverance, we will inevitably find it as a subalgebra
of the graph planar algebra. Indeed, this paper is the result of such perseverance.
On the other hand, nothing is this paper logically depends on the above theorem.

2.4 Notation for Hk

Let dk be the Perron-Frobenius dimension of the graphs Hk . For the Haagerup

subfactor, we have d0 =

√
5+
√

13
2 ≈ 2.07431. For the extended Haagerup subfactor,

d1 is the largest root of the polynomial x6 − 8x4 + 17x2 − 5,

d1 =

√
8

3
+

1

3
3

√
13

2

(
−5− 3i

√
3
)

+
1

3
3

√
13

2

(
−5 + 3i

√
3
)
,

approximately 2.09218.

Throughout, if d is the modulus of a planar algebra, we let q be a solution to q +
q−1 = d, and use the quantum integers

[n] =
qn − q−n

q − q−1
.
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By Hpk we mean the first graph in the pair of principal graphs Hk . When we talk
about loops or paths on Hp1 it is useful to have names for the vertices and arms.

v0 w0 x0 y0 z0 a0 b0 c

b2 a2 z2

b1 a1 z1
arm 0 →

← arm 2

← arm 1

Lemma 2.14 If [2] = dk , then [3][4k + 4] = [4k + 8].

Proof The dimensions of the three vertices on an arm of Hpk , counting from the
branch, are

dim b1 =
[4k + 5]

2
,

dim a1 =
[4k + 6]− [4k + 4]

2
,

and

dim z1 =
[4k + 7]− [4k + 5]− [4k + 3]

2
.

The condition [2] dim z1 = dim a1 easily gives the desired formula.

3 Uniqueness and existence

3.1 Uniqueness

The goal of this section is to prove that there is at most one subfactor planar algebra
with principal graphs Hk . To prove this, we will give a skein theoretic description
of a planar algebra Qk/N (which is not necessarily a subfactor planar algebra). We
then prove in Theorem 3.9 that any subfactor planar algebra with principal graphs
Hk must be isomorphic to Qk/N .

Definition 3.1 We say that a n-box S is uncappable if εi(S) = 0 for all i = 1, . . . , 2n
where

ε1 = ?? ···
, ε2 = ?? ···

, . . . , ε2n = ?

?

···
.

We say S is a rotational eigenvector with eigenvalue ω if ρ(S) = ωS where

ρ = ?

?

···
.

Note that ω must be a nth root of unity.

14



As described in [30], every subfactor planar algebra is generated by uncappable
rotational eigenvectors.

Definition 3.2 If S is an n-box, we use the following names and numbers for
relations on S :

(1) ρ(S) = −S ,

(2) S is uncappable,

(3) S2 = f (n) ,

(4) one-strand braiding substitute:

2n− 1

S

?

2n+ 2

f (2n+2) = i

√
[n][n+ 2]

[n+ 1]

n+ 1 n+ 1

n− 1
S

?

S

?

2n+ 2

f (2n+2) ,

(5) two-strand braiding substitute:

2n

S?

2n+ 4

f (2n+4) =
[2][2n+ 4]

[n+ 1][n+ 2]

n+ 1 2 n+ 1

n− 1 n− 1
S

?

S

?

S

?

2n+ 4

f (2n+4) .

We call relations (4) and (5) “braiding substitutes” because we think of them as
allowing us to move a generator “through” strands, rather like an identity

X∗ = X∗ (3.1)

in a braided tensor category. The planar algebras we consider in this paper are not
braided, and do not satisfy the Equation (3.1). Nevertheless, we found it useful
to look for relations that could play a similar role. In particular, the evaluation
algorithm described in §4 was inspired by the evaluation algorithms in [43] and [4]
for planar algebras of types D2n , E6 , and E8 , where Equation (3.1) holds.

Definition 3.3 Let Qk be the spherical planar algebra of modulus [2] = dk , gener-
ated by a (4k + 4)-box S , subject to relations (1)-(5) above.

Definition 3.4 A negligible element of a spherical planar algebra P is an element
x ∈ Pn,± such that the diagrammatic trace tr0 (xy) is zero for all y ∈ Pn,± .
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The set N of all negligible elements of a planar algebra P forms a planar ideal of
P . In the presence of an antilinear involution ∗, we can replace tr0 (xy) in the def-
inition with tr0 (xy∗) without changing the ideal. If the planar algebra is positive
definite, then N = 0. The following is well known.

Proposition 3.5 Suppose P is a spherical planar algebra with non-zero modulus
and N is the ideal of negligible morphisms. If the spaces P0,± are one-dimensional
then every non-trivial planar ideal is contained in N .

Proof Suppose that a planar ideal I contains a non-negligible element x and with-
out loss of generality assume x ∈ Pn,+ . Then there is some element y ∈ Pn,+ so
tr0 (xy) 6= 0 ∈ P0,+ . The element tr0 (xy) is itself in the planar ideal, so since P0,+

is one-dimensional, it must be entirely contained in I , and so the unshaded empty
diagram is in the ideal. Drawing a circle around this empty diagram, and using the
fact that the modulus is non-zero, shows that the shaded empty diagram is also in
the ideal. Now, every box space Pm,± is a module over P0,± under tensor product,
with the empty diagram acting by the identity. Thus Pm,± ⊂ I for all m ∈ N.

The sesquilinear pairing descends to Qk/N and is then nondegenerate.

Let ρ1/2 denote the “one-click” rotation from Pn,+ to Pn,− given by

?

?

···
.

Definition 3.6 Let the Haagerup moments be as follows:

• tr
(
S2
)

= [n+ 1],

• tr
(
S3
)

= 0,

• tr
(
S4
)

= [n+ 1],

• tr
(
ρ1/2(S)3

)
= i [2n+2]√

[n][n+2]
.

Proposition 3.7 Suppose P is a positive definite spherical planar algebra with
modulus dk , and S ∈ Pn,+ , where n = 4k + 4. If S is uncappable and satisfies
ρ(S) = −S and the Haagerup moments given in Definition 3.6 then S satisfies the
five relations given in Definition 3.2.

We defer the proof until §5.

Theorem 3.8 If P is a planar algebra that is singly generated by an n-box S satisfy-
ing the five relations of Definition 3.2 then any closed diagram in P0,+ is a multiple
of the empty diagram (so dim(Po,+) = 1).

The proof of Theorem 3.8 is given in §4.
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Theorem 3.9 If there exists a subfactor planar algebra P with principal graphs Hk
then P is isomorphic to Qk/N .

Proof The principal and dual principal graphs of P each have their first trivalent
vertex at depth 4k+3. In the language of [31], P has n-excess one, where n = 4k+4.
We follow [31, Section 5.1]. There exists S ∈ Pn,+ such that 〈S, TLn,+〉 = 0, so

Pn,+ = TLn,+ ⊕ CS.

Let r be the ratio of dimensions of the two vertices at depth 4k+ 4 on the principal
graph, chosen so that r ≥ 1. By [31], we can choose S to be self-adjoint, uncappable,
and a rotational eigenvector, such that

S2 = (1− r)S + rf (n).

(Our S is −R̃ in [31].)

The symmetry of Hpk implies that r = 1, so S2 = f (n) . We can use this to compute
powers of S and their traces. These agree with the first three Haagerup moments,
as given in Definition 3.6.

In a similar fashion, one defines ř ≥ 1 and Š from the dual principal graph and
calculates the moments of Š . Since the complement of Š is one-dimensional, Š
and ρ1/2(S) must be multiples of each other; that multiple can be calculated to be

Š =
√

ř
ωrρ

1/2(S). (This can be done by comparing
〈
Š, Š

〉
and

〈
ρ1/2(S), ρ1/2(S)

〉
,

as we learned from an earlier draft of [31]). Then it follows that

tr
(
ρ1/2(S)3

)
= ω3/2

√
r

ř
r(ř − 1)[n+ 1], (3.2)

for some square root ω1/2 of the rotational eigenvalue of S .

Although we will not use it here, we record the identity

ρ1/2(S)2 = −ω1/2r1/2(ř1/2 − ř−1/2)ρ1/2(S) + ω−1rf (n), (3.3)

which is equivalent to
Š2 = (1− ř)Š + řf (n).

By [31, Theorem 5.1.11], whenever P has n-excess one then ř = [n+2]
[n] and

r +
1

r
= 2 +

2 + ω + ω−1

[n][n+ 2]
.

Since r = 1, this implies that ω = −1. Note that we could also compute ř directly
from the dual principal graph. Jones’s proof that ω = −1 uses the converse of a
result along the lines of Lemma 5.13, since there must be some linear relation of the
form given in that Lemma.

In the case r = 1 we also have the freedom to replace S with −S , which we use to
(arbitrarily) choose the square root ω1/2 = −i. Substituting all these quantities into
Equation (3.2), and using the identity [n+ 1]([n+ 2]− [n]) = [2n+ 2], we now see
that S has all of the Haagerup moments, as given in Definition 3.6.
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By Proposition 3.7, S satisfies the relations given in Definition 3.2. Thus there is a
planar algebra morphism Qk → P given by sending S to S . Since P is positive
definite, this descends to the quotient to give a map

Φ: Qk/N → P.

By Proposition 3.5, Qk/N has no nontrivial proper ideals. Since Φ is non-zero, it
must be injective. The image of Φ is the planar algebra in P generated by S . This
is a subfactor planar algebra with the same modulus as P . Its principal graphs are
not (A∞, A∞) because the dimension of the n-box space is too large. Haagerup’s
classification shows that the principal graphs of the image of Φ must be Hk . How-
ever, since the principal graphs determine the dimensions of all box spaces, the
image of Φ must be all of P . Thus Φ is an isomorphism of planar algebras.

3.2 Existence

The subfactor planar algebra with principal graphs H0 is called the Haagerup pla-
nar algebra, and is isomorphic to Q0/N . The corresponding subfactor was con-
structed in [2] and [24]. The subfactor planar algebra was directly constructed in
[51]. There is no subfactor planar algebra with principal graphs Hk for k > 1. In
this case, by [3], Qk/N cannot be a finite depth planar algebra, let alone a subfactor
planar algebra. The following theorem deals with the one remaining case.

Theorem 3.10 There is a subfactor planar algebra with principal graphs H1 .

We prove this by finding H1 as a sub-planar algebra of the graph planar algebra of
one of the extended Haagerup graphs. The following lemma simplifies the proof
of irreducibility for subalgebras of graph planar algebras.

Lemma 3.11 If P ⊂ GPA(G), dimP0,+ = 1, and G has an even univalent vertex,
then P is an irreducible subfactor planar algebra.

Proof To show that P is an irreducible subfactor planar algebra, we need to show
that P is spherical and positive definite, and that dimP0,± = 1 and dimP1,+ = 1.
By Proposition 2.12, the graph planar algebra is spherical and positive definite. The
subalgebra P inherits both of these properties. We are given dimP0,+ = 1. Also,
P0,− injects into P1,+ , (by tensoring with a strand on the left). It remains only to
show that dimP1,+ = 1.

Let v be an even univalent vertex of G. Let w be the unique vertex connected to v .
Suppose X ∈ P1,+ is some functional on paths of length two in G.

Now tr0 (X) is a closed diagram with unshaded exterior. (Note here we use tr0 , the
diagrammatic trace, without applying a partition function, even though dimP0,+ =
1.) This is a functional defined on even vertices, via a state sum. Since v is univa-
lent, the state sum for tr0 (X) (v) has only one term, giving

tr0 (X) (v) = X(vw)
dw
dv
.
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Similarly,

tr0 (X∗X) (v) = X(vw)X∗(vw)
dw
dv

Thus if tr0 (X) (v) is zero then tr0 (X∗X) (v) is zero also. Note that tr0 (X) and
tr0 (X∗X) are both scalar multiples of the empty diagram, and so tr0 (X∗X) (v) = 0
implies that tr0 (X∗X) = 0.

Therefore, if tr0 (X) is zero then tr0 (X∗X) is zero. Then by positive definiteness,
if tr0 (X∗X) is zero then X is zero.

We conclude that the diagrammatic trace function is injective on P1,+ and thus P1,+

is one-dimensional.

Recall the Haagerup moments from Definition 3.6. In the current setting, n = 8,
[2] = d1 , and the Haagerup moments are as follows.

• tr
(
S2
)

= [9] ≈ 24.66097,

• tr
(
S3
)

= 0,

• tr
(
S4
)

= [9],

• tr
(
ρ1/2(S)3

)
= i [18]√

[8][10]
≈ 15.29004i.

Proposition 3.12 Suppose that S ∈ GPA(Hp1)8,+ is self-adjoint, uncappable, a ro-
tational eigenvector with eigenvalue −1, and has the above Haagerup moments.
Let PA(S) be the subalgebra of GPA(Hp1)8,+ generated by S . Then PA(S) is an
irreducible subfactor planar algebra with principal graphs H1 .

Proof By Proposition 3.7, S ∈ GPA(Hp1) satisfies all of the relations used to de-
fine Q1 . Thus by Theorem 3.9, PA(S) is isomorphic to Q1/N . By Theorem 3.8,
(Q1/N )0,+ is 1-dimensional. By Lemma 3.11 it follows that Q1/N is an irreducible
subfactor planar algebra. By Haagerup’s classification [18] it follows that the princi-
pal graphs of Q1/N must be the unique possible graph pair with the correct graph
norm, namely H1 .

To prove Theorem 3.10, it remains to find S ∈ GPA(Hp1)8,+ satisfying the require-
ments of the above proposition. We defer this to Section 6, where we give an ex-
plicit description of S and some long computations of the moments, assisted by
computer algebra software.

4 The jellyfish algorithm

The aim of this section is to prove that the relations of Definition 3.2 enable us to
reduce any closed diagram built from copies of S to a scalar multiple of the empty
diagram.
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Questions of whether you can evaluate an arbitrary closed diagram are ubiquitous
in quantum topology. The simplest such algorithms (e.g., the Kauffman bracket al-
gorithm for knots) involve decreasing the number of generators (in this case, cross-
ings) at each step. Slightly more complicated algorithms (e.g., HOMFLY evalua-
tions) include steps that leave the number of generators constant while decreasing
some other measure of complexity (such as the unknotting number). Another com-
mon technique is to apply Euler characteristic arguments to find a small “face”
(with generators thought of as vertices) that can then be removed. Again, the sim-
plest such algorithms decrease the number of faces at every step (e.g., Kuperberg’s
rank 2 spiders [40]), while more difficult algorithms require steps that maintain
the number of faces before removing a face (e.g., Peters’ approach to H0 in [51]). In
all of these algorithms, the number of generators is monotonically non-increasing
as the algorithm proceeds. The algorithm we describe below is unusual in that
it initially increases the number of generators in order to put them in a desirable
configuration. We hope that this technique will be of wider interest in quantum
topology (see [19] for a subsequent application of this technique). Therefore we
have written this section to be independent of the rest of the paper, apart from
references to Definitions 3.1 and 3.2.

The algorithm we will describe gives a proof of Theorem 3.8, which we repeat from
above:

Theorem 3.8 If P is a planar algebra that is singly generated by an n-box S satisfy-
ing the five relations of Definition 3.2 then any closed diagram in P0,+ is a multiple
of the empty diagram (so dim(Po,+) = 1).

We do not actually need the full strength of the relations of Definition 3.2. The
theorem is true for any planar algebra that is singly generated by an n-box S such
that:

• S is a rotational eigenvector: ρ(S) = ωS for some ω ,
• S is uncappable (see Definition 3.1),
• S2 = aS + bf (n) for some scalars a and b (multiplication is defined in Figure

1), and
• S satisfies one- and two-strand braiding substitutes of the form:

2n− 1

S

?

2n+ 2

f (2n+2) = x

n+ 1 n+ 1

n− 1
S

?

S

?

2n+ 2

f (2n+2)

2n

S?

2n+ 4

f (2n+4) = y

n+ 1 2 n+ 1

n− 1 n− 1
S

?

S

?

S

?

2n+ 4

f (2n+4)
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for some scalars x and y in C.

Before going through the details, we briefly sketch the idea. First use the one- and
two-strand braiding substitutes to pull all copies of S to the outside of the diagram.
This will usually increase the number of copies of S . We can then guarantee that
there is a pair of copies of S connected by at least n strands. This is a copy of S2 ,
which we can then express using fewer copies of S . All copies of S remain on the
outside, and so we can again find a copy of S2 . Repeating this eventually gives
an element of the Temperley-Lieb planar algebra, which is evaluated as usual. See
Figure 2 for an example. We like to think of the copies of S as “jellyfish floating to
the surface,” and hence the name for the algorithm.

  

  

Figure 2: The initial steps of the jellyfish algorithm. The dotted ovals represent lin-
ear combinations of Temperley-Lieb diagrams. This is only a schematic illustration
- to be precise, the result should be a linear combination of diagrams with various
(sometimes large) numbers of copies of S .

Definition 4.1 Suppose D is a diagram in P . Let S0 be a fixed copy of the genera-
tor inside D . Suppose γ is an embedded arc in D from a point on the boundary of
S0 to a point on the top edge of D . Suppose γ is in general position, meaning that
it intersects the strands of D transversely, and does not touch any generator except
at its initial point on S0 . Let m be the number of points of intersection between
γ and the strands of D . If m is minimal over all such arcs γ then we say γ is a
geodesic and m is the distance from S0 to the top of D .

Lemma 4.2 Suppose X is a diagram consisting of one copy of S with all strands
pointing down, and d parallel strands forming a “rainbow” over S , where d ≥ 1.
Then X is a linear combination of diagrams that contain at most three copies of S ,
each having distance less than d from the top of the diagram.
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Proof First consider the case d = 1. Up to some number of applications of the
rotation relation ρ(S) = ωS , X is as shown in Figure 3.

2n− 1

S

?

Figure 3: X in the case d = 1.

Recall that we have the relation

2n− 1

S

?

2n+ 2

f (2n+2) = x

n+ 1 n+ 1

n− 1
S

?

S

?

2n+ 2

f (2n+2) .

Consider what happens to the left side of the above relation when we write f (2n+2)

as a linear combination of Temperley-Lieb diagrams β . The term in which β is the
identity occurs with coefficient one, and gives the diagram X . Suppose β is not
the identity. Then β contains a cup that connects two adjacent strands from X . If
both ends of the cup are attached to S then the resulting diagram is zero. If not,
then the cup must be at the far left or the far right of β . Such a cup converts X to
a rotation of S , so gives distance zero from S to the top of the diagram.

Now consider what happens to the right side of the above relation when we write
f (2n+2) as a linear combination of Temperley-Lieb diagrams β . Every term in this
expansion is a diagram with two copies of S , each of having distance zero from the
top.

By rearranging terms in the one-strand braiding substitute, we can write X as a
linear combination of diagrams that contain one or two copies of S , each having
distance zero from the top of the diagram. This completes the case d = 1.

The case d = 2 is similar, but we use the two-strand braiding substitute.

Finally, suppose d > 2. If d is odd then γ begins in a shaded region of X . Then
X contains a copy of the diagram shown in Figure 3, up to the rotation relation
ρ(S) = ωS . We can therefore use the one-strand braiding substitute, as we did
in the case d = 1. Similarly, if d is even then we use the two-strand braiding
substitute.

Definition 4.3 We say a diagram D in P is in jellyfish form if all occurrences of S
lie in a row at the top of D , and all strands of D lie entirely below the height of the
tops of the copies of S .
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Lemma 4.4 Every diagram in P is a linear combination of diagrams in jellyfish
form.

Proof Suppose D is a diagram in P (not necessarily closed), drawn in such a way
that all endpoints lie on the bottom edge of D . If every copy of the generator in
D is distance zero from the top edge of D then D is already in jellyfish form, up
to isotopy. If not, we will use Lemma 4.2 to pull each copy of S to the top D . It
is convenient for our proof, but not necessary for the algorithm, to move copies of
our generator S along geodesics.

Suppose S0 is a copy of S that has distance d from the top of D , where d ≥ 1.
Let γ be a geodesic from S0 to the top edge of D . Let X be a small neighborhood
of S0 ∪ γ . By applying an isotopy, we consider X to be a diagram in a rectangle,
consisting of a copy of S0 with all strands pointing down, and a “rainbow” of d
strands over it.

By Lemma 4.2, X is a linear combination of diagrams that contain at most three
copies of S , each having distance less than d from the top of the diagram. Let X ′

be one of the terms in this expression for X . Let D′ be the result of replacing X by
X ′ in D .

Suppose S1 is a copy of the generator in D′ . If S1 lies in X ′ then the distance
from S1 to the top of D′ is at most d − 1. Now suppose S1 does not lie in X ′ . By
basic properties of geodesics, there is a geodesic in D from S1 to the top of D that
does not intersect γ . This geodesic is still a path in general position in D′ , and still
intersects strands in the same number of points. Thus the distance from S1 to the
top of D does not increase when we replace X by X ′ .

In summary, if we replace X by X ′ , then S0 will be replaced by one, two or three
copies of S that are closer to the top of D , and no other copy of S will become
farther from the top of D . Although the number of copies of S may increase, it is
not hard to see that this process must terminate. For example, we have decreased
the sum over each generator S0 of 4 to the power of the distance from S0 to the
top.

We now prove Theorem 3.8, that dim(P0,+) = 1.

Proof of Theorem 3.8. Suppose D is a closed diagram with unshaded exterior.
We must show that D is a scalar multiple of the empty diagram. By the previ-
ous lemma, we can assume D is in jellyfish form. We can also assume there are no
closed loops or cups attached to generators, so that every strand must connect two
different copies of the generator.

We argue that there is a copy of the generator whose strands only go to one or both
of its immediate neighbors. This is a simple combinatorial fact about this kind of
planar graph. Think of the copies of the generator as vertices, and consider all
strands that do not connect adjacent vertices. Amongst these, find one that has the
smallest (positive) number of vertices between its endpoints. Any vertex between
the endpoints of this strand can connect only to its two neighbors.
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Let S0 be a copy of the generator such that the strands of S0 only go to one or
both of its immediate neighbors. Then S0 is connected to some neighbor, S1 , by at
least n parallel strands. See Figure 4 for an example. Recall that S2 = aS + bf (n) .
Thus we can replace S0 and S1 with aS + bf (n) , giving a linear combination of
diagrams that are still in jellyfish form, but contain fewer copies of the generator.
By induction, D is a scalar multiple of the empty diagram.

Figure 4: Jellyfish form, illustrating (with n = 8) the proof of Theorem 3.8.

5 Relations from moments

In this section we prove Proposition 3.7, which says that certain conditions on an
element S imply the five relations of Definition 3.2. We use this Proposition once
in the proof of Theorem 3.9, and once in the proof of Theorem 3.10. These are the
uniqueness and existence results. In the proof of uniqueness, we must show that
a certain subfactor planar algebra P is isomorphic to Qk/N . We use Proposition
3.7 to show that an element S of P satisfies the defining relations of Qk/N . In the
proof of existence, we must show that a certain subalgebra P of a graph planar
algebra has a one-dimensional space of n-boxes. We use Proposition 3.7 to show
that the generator S of P satisfies relations, which we then use in the algorithm of
§4.

Most of this section consists of computations of inner products between diagrams.
Since the values of these inner products may be useful for studying other planar
algebras, we strive to use weaker assumptions whenever possible.

Assumption 5.1 P is a spherical planar algebra with modulus [2] = q+q−1 , where
q is not a root of unity (so we can safely divide by quantum integers). Furthermore,
S ∈ Pn,+ is uncappable and has rotational eigenvalue ω .

Recall that the Haagerup moments are as follows.

• tr
(
S2
)

= [n+ 1],

• tr
(
S3
)

= 0,

• tr
(
S4
)

= [n+ 1],

• tr
(
ρ1/2(S)3

)
= i [2n+2]√

[n][n+2]
.

24



Assumption 5.2 P is positive definite and has modulus [2] = dk , where n = 4k+4.
Furthermore, S ∈ Pn,+ has rotational eigenvalue ω = −1, and has the Haagerup
moments.

Restatement of Proposition 3.7 Suppose P is a planar algebra, S ∈ Pn,+ , and
Assumptions 5.1 and 5.2 hold. Then S satisfies the five relations given in Defini-
tion 3.2.

The proof involves some long and difficult computations, but the basic idea is very
simple. We will define diagrams A, B , C and D . We must prove certain linear re-
lations hold between A and B , and between C and D . Since P is positive definite,
we can do this by computing certain inner products. In general, there is a linear
relation between X and Y if and only if

〈X,X〉〈Y, Y 〉 = |〈X,Y 〉|2.

In this case,
〈Y, Y 〉X − 〈X,Y 〉Y = 0,

as can be seen by taking the inner product of this expression with itself.

To compute the necessary inner products we must evaluate certain closed diagrams.
Most of these closed diagrams involve a Jones-Wenzl idempotent. In principal,
we could expand this idempotent into a linear combination of Temperley-Lieb di-
agrams, and evaluate each resulting tangle in terms of the moments, or using rela-
tions that have already been proved. In practice, we must take care to avoid dealing
with an unreasonably large number of terms.

5.1 Definitions and conventions

Notation We use the notation that a thick strand in a Temperley-Lieb diagram
always represents n− 1 parallel strands. For example,

is the identity of TL2n+2 .

Definition 5.3 For m ≥ 0, let

Wm = qm + q−m − ω − ω−1,

as in [31, Definition 4.2.6].

The diagrams A, B , C and D of Figures 5 and 6 are the terms in the “braiding”
relations we wish to prove.

Along the way, we will also use the diagrams Γ and B′ , as shown in Figure 7.
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A =

2n− 1

S

?

2n+ 2

f (2n+2) , B =

n+ 1 n+ 1

n− 1
S

?

S

?

2n+ 2

f (2n+2) .

Figure 5: A and B

C =

2n

S?

2n+ 4

f (2n+4) , D =

n+ 1 2 n+ 1

n− 1 n− 1
S

?

S

?

S

?

2n+ 4

f (2n+4) .

Figure 6: C and D

Γ =

S ?

S

?

S

?

S

?

2

2

n− 1

n− 1

n− 1

n− 1

, B′ =

2

n+ 1 n− 1

n− 1
S

?

S

?

2n+ 2

f (2n+2) .

Figure 7: Γ and B′

5.2 Computing inner products

We now calculate the necessary inner products.

Lemma 5.4 If Assumption 5.1 holds then

〈A,A〉 =
1

[2n+ 2]
W2n+2tr

(
S2
)
.

The same holds with the reverse shading.
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Proof We must evaluate the closed diagram

〈A,A〉 = Z



2n− 1

S

?

2n− 1

S

?

f (2n+2)


.

The idea is to apply Lemma 2.11 to the copy of f (2n+2) , and then evaluate each of
the resulting diagrams.

Consider the first term. Here, f (2n+2) is replaced by a copy of f (2n+1) together with
a single vertical strand on the right. Since the planar algebra is spherical, we can
drag this strand over to the left. This results in a partial trace of f (2n+1) , which is
equal to

[2n+ 2]

[2n+ 1]
f (2n).

By noting that S · f (n) = S , we obtain

[2n+ 2]

[2n+ 1]
tr
(
S2
)

as the value of the first term.

Now consider the terms in the sum over a and b. Here, f (2n+2) is replaced by a
copy of f (2n) together with a “cup” and a “cap” in positions given by a and b. In
most cases, the resulting diagram is zero because S is uncappable. We only need
to consider the four cases where a, b ∈ {1, 2n + 1}. Each of these gives tr

(
S2
)

, up
to some rotation of one or both copies of S . We obtain

1

[2n+ 1][2n+ 2]
(−1− [2n+ 1]2 − [2n+ 1]ω − [2n+ 1]ω−1)tr

(
S2
)
.

The result now follows by adding the above two expressions and writing the quan-
tum integers in terms of q .

Lemma 5.5 If Assumption 5.1 holds and either ω = −1 or S2 = f (n) then

〈A,B〉 = tr
(
ρ1/2(S)3

)
.
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Proof We must evaluate the closed diagram

〈A,B〉 = Z



2n− 1

S

?

n+ 1 n+ 1

n− 1
S

?

S

?

f (2n+2)


.

Consider the complete expansion of f (2n+2) into a linear combination of Temperley-
Lieb diagrams β ∈ TL2n+2 . For most such β , the resulting diagram is zero because
S is uncappable. There are only three values of β we need to consider. For each
of these, we compute the corresponding coefficient, and easily evaluate the corre-
sponding diagram. The results are shown in Table 1.

β Coefff (2n+2)(β) value of diagram

1 tr
(
ρ1/2(S)3

)
(−1)n+1 [n+1]

[2n+2] tr
(
S3
)

(−1)n+1 [n+1]
[2n+2] ω−1tr

(
S3
)

Table 1: The terms of f (2n+2) that contribute to 〈A,B〉.

Now take the sum over all β in the table of the coefficient times the value of the
diagram. Note that if S2 = f (n) then tr

(
S3
)

= 0. Thus the two non-identity values
of β either cancel or give zero. The term where β is the identity gives the desired
result.

Lemma 5.6 If Assumption 5.1 holds and S2 = f (n) then

〈B,B〉 =
[n+ 1][2n+ 2]

[n][n+ 2]
.

Proof Consider the two diagrams

〈B,B〉 = Z



n+ 1 n+ 1

n− 1
S

?

S

?

n+ 1 n+ 1

n− 1
S

?

S

?

f (2n+2)


,
〈
f (n+1), B

〉
= Z


n+ 1 n+ 1

n− 1
S

?

S

?

f (2n+2)

f
(n

+
1
)

n+ 1 n+ 1


.
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The second is clearly zero. We will compare what happens to each of these dia-
grams when we expand the copy of f (2n+2) into a linear combination of Temperley-
Lieb diagrams.

Let β be a Temperley-Lieb diagram in the expansion of f (2n+2) . Suppose β con-
tains a cup that connects endpoints number i and i+1 at the top for some i 6= n+1.
The corresponding diagram for 〈B,B〉 is zero because the cup connects two strands
from the same copy of S . Similarly, the corresponding diagram for 〈f (n+1), B〉 is
zero because the cup connects two strands from the same side of f (n+1) . Thus both
diagrams corresponding to β are zero.

Now suppose β contains a cup in the middle, connecting endpoints number n+ 1
and n + 2 at the top. In the corresponding diagram for 〈B,B〉, this cup produces
a copy of S2 , which we can replace with f (n) . For 〈f (n+1), B〉, this cup produces a
partial trace of f (n+1) , which we can replace with [n+2]

[n+1]f
(n) . Thus the two diagrams

corresponding to β differ only by a factor of [n+2]
[n+1] .

Finally, suppose β is the identity diagram. The corresponding diagram for 〈B,B〉
consists of four copies of S arranged in a rectangle. The left and right sides of this
rectangle consist of n+ 1 parallel strands. We can replace one of these sides with a
partial trace of f (n) . Thus the diagram is equal to [n+1]

[n] tr
(
S2
)

. The corresponding

diagram for 〈f (n+1), B〉 is equal to tr
(
S2
)

.

We can now evaluate

〈B,B〉 = 〈B,B〉 − [n+ 1]

[n+ 2]
〈f (n+1), B〉.

For both terms on the right hand side, we express f (2n+2) as a linear combination
of Temperley-Lieb diagrams β . For every β except the identity, these terms cancel.
The identity term gives the following.

〈B,B〉 =
[n+ 1]

[n]
tr
(
S2
)
− [n+ 1]

[n+ 2]
tr
(
S2
)
.

The result now follows from a quantum integer identity, and that fact that tr
(
S2
)

=
[n+ 1].

Lemma 5.7 If Assumption 5.1 holds then

〈C,C〉 =
[2][2n+ 2]

[2n+ 3][2n+ 4]
W2n+4〈A,A〉.

Proof We must evaluate the closed diagram

〈C,C〉 = Z



2n

S?

2n

S?

f (2n+4)


.
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The proof is very similar to that of Lemma 5.4. Indeed, these are both special cases
of a general recursive formula. The idea is to apply Lemma 2.11 to the copy of
f (2n+4) , and then evaluate each of the resulting diagrams.

Consider the first term. Here, f (2n+4) is replaced by a copy of f (2n+3) together with
a single vertical strand on the right. We can use sphericality to drag this strand over
to the left. This results in a partial trace of f (2n+3) , which is

[2n+ 4]

[2n+ 3]
f (2n+2).

Using Lemma 5.4, we obtain
[2n+ 4]

[2n+ 3]
〈A,A〉.

Now consider the terms in the sum over a and b. Here, f (2n+4) is replaced by a
copy of f (2n+2) together with a “cup” and a “cap” in positions given by a and b.
In most cases, the resulting diagram is zero because S is uncappable. A cup at the
leftmost position also gives zero since it connects two strands coming from the top
right of f (2n+2) . Similarly, a cup in the rightmost position gives zero, as does a cap
in the leftmost or rightmost position. The only cases that give a non-zero diagram
are when a, b ∈ {2, 2n+ 2}. We obtain

1

[2n+ 3][2n+ 4]
(−[2]2 − [2n+ 2]2 − [2][2n+ 2]ω − [2][2n+ 2]ω−1)〈A,A〉.

The result now follows by adding the above two expressions and expanding the
quantum integers in terms of q .

Lemma 5.8 If Assumption 5.1 holds and S2 = f (n) then

〈D,D〉 =
[n+ 1]2[2n+ 2]

[2][n]2[2n+ 3]
([n+ 3]− [2][n]).

Proof We must evaluate the closed diagram

〈D,D〉 = Z



n+ 1 2 n+ 1

n− 1 n− 1
S

?

S

?

S

?

n+ 1 2 n+ 1

n− 1 n− 1
S

?

S

?

S

?

f (2n+4)


.

Consider the expansion of f (2n+4) into a linear combination of Temperley-Lieb di-
agrams β ∈ TL2n+4 . For each such β , we compute the coefficient and the value
of the corresponding diagram. There are twelve values of β that give a non-zero
diagram. Many of these are reflections or rotations of each other. They are shown
in Table 2.
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β Coefff (2n+4)(β) value of diagram

1
(

[n+1]
[n]

)2
tr
(
S2
)

, − [n+1][n+3]
[2n+4]

[n+1]
[n] tr

(
S4
)

, [n][n+1][n+2][n+3]
[2][2n+3][2n+4]

(
[n+1]

[n]

)2
tr
(
S2
)

, [n]2[n+1]2

[2][2n+3][2n+4]

(
[n+1]

[n]

)2
tr
(
S2
)

, , , − [n][n+1]2[n+2]
[2n+3][2n+4]

[n+1]
[n] tr

(
S4
)

[2][n+1]2[n+2]2

[2n+3][2n+4] tr
(
S6
)

Table 2: The terms of f (2n+4) that contribute to 〈D,D〉.

Now take the sum over all β in the table of the coefficient times the value of the
diagram. Since S2 = f (n) , we have

tr
(
S2
)

= tr
(
S4
)

= tr
(
S6
)
.

Lemma 5.9 If Assumption 5.1 holds and S2 = f (n) and ω = −1 then

〈C,D〉 = Z(Γ) +
2

[n]
+

1

[2n+ 3]
〈A,A〉.

Proof First we prove a formula for D .

D =

2n+ 3

n 2 n+ 1

n− 1 n− 1
S

?

S

?

S

?

f (2n+3) . (5.1)

Apply a left to right reflection of Lemma 2.10 to the copy of f (2n+4) in D . The first
term gives the desired diagram. Now consider a term in the sum over a. This con-
tains a cup in a position given by a. For all but two values of a, this cup connects
two strands from the same copy of S , so the resulting diagram is zero. The remain-
ing two values of a are n+ 1 and n+ 3. For each of these, the cup connects two dif-
ferent copies of S , giving rise to a copy of S2 . We can replace this with f (n) , which
is a linear combination of Temperley-Lieb diagrams. But any such Temperley-Lieb
diagram gives rise to a cup connected to the top edge of f (2n+3) , and thus gives
zero. This completes the derivation of Equation (5.1).
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Next we prove the following.

D =

n 2 n

n− 1 n− 1
S

?

S

?

S

?

2n+ 2

f (2n+2) +
1

[2n+ 3]

2n

2n+ 4

S

?

f (2n+2) . (5.2)

To prove this, apply Lemma 2.10 to the copy of f (2n+3) in Equation (5.1). The first
term in the expansion gives the first term in the desired expression for D .

It remains to show that the sum over a is equal to the second term in the desired
expression. Consider a term for a 6∈ {n, n+ 2}. The cup connects two strands from
the same copy of S , giving zero.

Consider the term corresponding to a = n+ 2. The position of the cup is such that
the right two copies of S are connected by n strands. This is a copy of S2 , which
is equal to f (n) , which in turn is a linear combination of Temperley-Lieb diagrams.
Any such Temperley-Lieb diagram results in a cap connected to the top edge of
f (2n+2) , giving zero.

Now consider the term corresponding to a = n. The coefficient of this term is

(−1)n+1 [n]

[2n+ 3]
.

The left two copies of S form a copy of S2 , which is equal to a sideways copy of
f (n) , which in turn we express as a linear combination of Temperley-Lieb diagrams
β . Every such β gives zero except

β = ... ,

which has coefficient
(−1)n+1 1

[n]

and gives the second diagram in the desired expression for D . The total coeffi-
cient of this diagram is the product of the above coefficients for the term a and the
diagram β . This completes the derivation of Equation (5.2).

Now we return to our computation of 〈C,D〉. We must evaluate the expression

Z



2n

S?

n+ 1 2 n+ 1

n− 1 n− 1
S

?

S

?

S

?

f (2n+4)


.
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Apply Equation (5.2), upside down, to the bottom half of this diagram. For the last
term of this equation, apply sphericality and use Lemma 5.4 to reverse the shading.
We obtain the term

1

[2n+ 3]
〈A,A〉.

The first term from the equation gives

Z



S?

2n

n 2 n

n− 1 n− 1
S

?

S

?

S

?

f (2n+2)



. (5.3)

We expand f (2n+2) into a linear combination of Temperley-Lieb diagrams β . There
are five values of β we need to consider. These are shown in Table 3.

β Coefff (2n+2)(β) value of diagram

1 Z(Γ)

(−1)n [n+2]
[2n+2] (−1)n+1 1

[n]ωtr
(
S2
)

(−1)n [n+2]
[2n+2] (−1)n+1 1

[n]ω
−1tr

(
S2
)

, (−1)n [n]
[2n+2] (−1)n+1 1

[n] tr
(
S2
)

Table 3: The terms of f (2n+2) that contribute to (5.3).

Now take the sum over all β in the table of the coefficient times the value of the
diagram.

The following inner products involving B′ will help us to evaluate Z(Γ).

Lemma 5.10 If Assumption 5.1 holds and S2 = f (n) and ω = −1 then

〈A,B′〉 =
[n− 1]

[n+ 1]
tr
(
ρ1/2(S)3

)
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Proof We must evaluate the closed diagram

Z



2n− 1

S

?

2

n+ 1 n− 1

n− 1
S

?

S

?

f (2n+2)



.

The proof is very similar to that of Lemma 5.5, so we will omit the details. The
relevant table is shown in Table 4.

β Coefff (2n+2)(β) value of diagram
[2n]

[2n+2] tr
(
ρ1/2(S)3

)
[2]

[2n+2] ω−1tr
(
ρ1/2(S)3

)
Table 4: The terms of f (2n+2) that contribute to 〈A,B′〉.

Lemma 5.11 If Assumption 5.1 holds and S2 = f (n) and ω = −1 then

〈B,B′〉 = Z(Γ) +
[2][n+ 1]

[n][n+ 2]
.

Proof We must evaluate the closed diagram

Z



n+ 1 n+ 1

n− 1
S

?

S

?

2

n+ 1 n− 1

n− 1
S

?

S

?

f (2n+2)



.

Inspired by the proof of Lemma 5.6, we observe that

〈B,B′〉 = 〈B,B′〉 − [n+ 1]

[n+ 2]
〈f (n+1), B′〉.

34



We expand the copies of f (2n+2) on the right hand side. By the same argument
as for Lemma 5.6, all terms will cancel except for those coming from the identity
diagram.

If we replace f (2n+2) by the identity in 〈B,B′〉 then we obtain Γ. If we replace
f (2n+2) by the identity in 〈f (n+1), B′〉 then we obtain a diagram containing two
copies of S and one copy of f (n+1) . We must now expand f (n+1) as a linear combi-
nation of Temperley-Lieb diagrams β . For all but one such diagram β , the resulting
diagram is zero because S is uncappable. The only diagram we need to consider is

β = ... ,

which has coefficient [2]
[n][n+1] and gives the diagram ω−1tr

(
S2
)

.

5.3 Proving relations

We now use our inner products, together with Assumptions 5.1 and 5.2, to prove
that the required relations hold. Note that the assumption ω = −1 implies

W2m =

(
[2m]

[m]

)2

.

Lemma 5.12 If Assumptions 5.1 and 5.2 hold then S2 = f (n) .

Proof The relevant inner products are as follows.

• 〈S2, S2〉 = tr
(
S4
)

= [n+ 1],

• 〈S2, f (n)〉 = tr
(
S2
)

= [n+ 1],

• 〈f (n), f (n)〉 = tr
(
f (n)

)
= [n+ 1].

The inner product of S2 − f (n) with itself is zero, and the result follows from the
assumption that P is positive definite.

Lemma 5.13 If Assumptions 5.1 and 5.2 hold then A = i

√
[n][n+2]

[n+1] B .

Proof By Lemmas 5.4, 5.5, 5.6, and our values for the moments, we have the fol-
lowing.

• 〈A,A〉 = [2n+2]
[n+1] ,

• 〈A,B〉 = i [2n+2]√
[n][n+2]

,

• 〈B,B〉 = [n+1][2n+2]
[n][n+2] .

Thus
〈A,A〉〈B,B〉 = |〈A,B〉|2.

Thus A and B are linearly dependent. The precise relation is then

A =
〈A,B〉
〈B,B〉

B.
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Lemma 5.14 If Assumptions 5.1 and 5.2 hold then

Z(Γ) =
[n− 1][2n+ 2]− [2][n+ 1]

[n][n+ 2]
.

Proof By Lemmas 5.10 and 5.11,

• 〈A,B′〉 = [n−1]
[n+1] i

[2n+2]√
[n][n+2]

.

• 〈B,B′〉 = Z(Γ) + [2][n+1]
[n][n+2] .

By Lemma 5.13, A = i

√
[n][n+2]

[n+1] B . Thus

〈A,B′〉 = i

√
[n][n+ 2]

[n+ 1]
〈B,B′〉.

The result follows by solving for Z(Γ).

Lemma 5.15 If Assumptions 5.1 and 5.2 hold then

C =
[2][2n+ 4]

[n+ 1][n+ 2]
D.

Proof By Lemmas 5.7, 5.9, 5.8 and our values for Z(Γ) and the moments, we have
the following.

• 〈C,C〉 = [2][2n+2]2[2n+4]
[n+1][n+2]2[2n+3]

.

• 〈C,D〉 = [2n+2]2

[n+2][2n+3] .

• 〈D,D〉 = [n+1]2[2n+2]
[2][n]2[2n+3]

([n+ 3]− [2][n]).

Here, we have used quantum integer identities to simplify the expression for 〈C,D〉.

For arbitrary n, m, and q ,

[n+m] =
1

[4]
([4−m][n] + [m][n+ 4]),

and
[2m] = [m]([m+ 1]− [m− 1]).

By Lemma 2.14 and the assumption [2] = dk ,

[n+ 4] = [3][n].

(This is the only time we use the assumption [2] = dk .) We can now express each
of our inner products in terms of [n], [2], [3], and [4]. After some computation we
find that

〈C,C〉〈D,D〉 = |〈C,D〉|2.

Thus C and D are linearly dependent. The precise relation is then

C =
〈C,C〉
〈C,D〉

D.
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6 Properties of the generator

In this section we construct an 8-box S ∈ GPA(Hp1) that satisfies the hypotheses
of Proposition 3.12. The planar algebra generated by S is the desired extended
Haagerup planar algebra, thus completing the proof of Theorem 3.10.

We start with a brief description of how we found S , since the definition of S is
not very enlightening on its own. The goal was to find S ∈ GPA(Hp1)8 satisfying
the first three relations of Definition 3.2, which say that ρ(S) = −S , S is uncap-
pable, and S2 = f (8) . The dimension of GPA(Hp1)8 is the number of loops of
length 16 based at even vertices of Hp1 , which is equal to 148375. We found the
19-dimensional space of solutions to the first two relations, then tried to solve the
equation S2 = f (8) . This one equation in the 8-box space is actually 148375 sep-
arate equations over C. We expect of course that there are many redundancies
amongst these equations.

At this point the problem sounds quite tractable, but we were still unable to solve
it by general techniques. We then used various ad hoc methods. First, we searched
for quadratics that are perfect squares and solved those. This reduced the problem
from 19 variables to 9. We then chose a small collection of quadratics, correspond-
ing to certain ‘extremal’ loops in the basis, and found numerical approximations to
a solution of these, using Newton’s method. Approximating such a solution by al-
gebraic numbers, we could then go back and check that all the quadratic equations
are satisfied exactly.

Remark. Our solution S need not be unique. Although the subfactor planar alge-
bra with principal graphs H1 is unique, there may be more than one way to embed
it in its graph planar algebra. Indeed, −S is also a solution, which corresponds to
applying the graph automorphism, by Lemma 6.4. Due to the approximate nature
of our search for S , we cannot say whether there are any other solutions.

The above description may sound daunting, but we manage to give a definition of
S that involves specifying only 21 arbitrary looking numbers, and we reduce all the
conditions we need to check on this element to computing certain powers of two
matrices. The definition of S is still somewhat overwhelming, and the verification
of its properties is done by computer. Those intrepid readers who continue reading
this section will have to read a short Mathematica program in order to fully verify
some of the steps.

We will use the notation for vertices of Hp1 given in Section 2.4. Let

λ =
√

2− d2,

C = −21516075λ4 + 8115925λ2 + 45255025.

For each w ∈ {0, 1, 2}8 we will define an element pw ∈ Z[λ] below.

Definition 6.1 Suppose γ is a loop of length 16 in Hp1 . Let the collapsed loop γ̂
be the sequence in {0, 1, 2}8 such that γ2i−1 is in arm number γ̂i (in the notation of
Section 2.4) of Hp1 . Further, define σ(γ) to be −1 raised to the number of times the
vertices v0, w0, zi and ai appear in γ .

S(γ) = Cσ(γ)pγ̂
1√
dγ1dγ9

16∏
i=1

1√
dγi

, (6.1)
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where the pγ̂ are defined below.

Remark. The main reason we write S in the above form is that the pγ̂ have much
better number theoretic properties than the S(γ). In particular, the pγ̂ all live in a
degree 6 extension of Q while the S(γ) live in a much larger number field. As a
consequence it is easier to do exact arithmetic using the pγ̂ . There is a general rea-
son for this phenomenon: the convention that subfactor planar algebras be spher-
ical is not the best convention from the point of view of number theory. A much
more convenient convention is the “lopsided” one where shaded circles count for 1
while unshaded circles count for the index d2 . Furthermore, this convention is also
well-motivated from the perspective of subfactor theory where NMM has as its left
von Neumann dimension the index while its right von Neumann dimension is 1.
These issues warrant further investigation (see [44, 45]).

We make an apparently ad-hoc definition of 21 elements of Z[λ].

p00000001 = −2λ4 − λ2 + 9 p00000011 = −λ5 − λ3 + 3λ

p00000101 = 2λ4 + λ2 − 9 p00000111 = 1

p00001001 = λ5 − λ3 − 3λ p00001011 = λ3 − 1

p00010001 = 2λ4 + λ2 − 9 p00010011 = λ5 − λ4 + λ2 − 3λ+ 4

p00010101 = λ4 − 2λ2 + 1 p00010111 = −λ4 + 1

p00011011 = λ4 − λ2 − 3 p00100101 = −2λ4 + 5

p00100111 = λ2 + 1 p00101011 = −λ5 − λ3 + λ+ 1

p00101101 = λ5 − λ p00110011 = 2λ5 + 5λ3 + 4λ

p00110111 = −λ5 − 2λ3 − 4λ2 − λ− 5 p01010101 = −4λ4 + 3λ2 + 7

p01010111 = λ4 + λ2 p01011011 = λ4 − 2λ2 − 4

p01110111 = λ4 + 6λ2 + 6

These elements are also defined in a Mathematica notebook, available along with
the sources for this article on the arXiv (as the file extra/code/Generator.nb), or
at http://tqft.net/EH/notebook. A PDF printout of the notebook is available
by following this URL, then replacing .nb with .pdf. Everything that follows in
this section is paralleled in the notebook, and in particular each of the statements
below that requires checking some arithmetic has a corresponding test defined in
the notebook.

Definition-Lemma 6.2 We can consistently extend these definitions to every pw
for w ∈ {0, 1}8 by the rules

pabcdefgh = −pbcdefgha, (6.2)
pabcdefgh = pahgfedcb, (6.3)

and

p00000000 = 0, (6.4)
pabcd1111 = 0. (6.5)
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Proof For example, one can get from p00110011 to p01100110 either by rotating, or
by reversing; fortunately p00110011 is purely imaginary. Under the operations im-
plicit in Equations (6.2) and (6.3) each orbit in {0, 1}8 contains exactly one of the
elements on which p is defined above or in Equations (6.4) and (6.5). The Mathe-

matica notebook provides functions VerifyRotation and VerifyConjugation to
check that these rules hold uniformly.

We further extend these definitions to every pw for w ∈ {0, 1, 2}8 by the rules

px0y + px1y + px2y = 0. (6.6)

Lemma 6.3 For every abcd ∈ {0, 1, 2}4

pabcd2222 = 0. (6.7)

Proof This is a direct computation of 16 cases for abcd ∈ {0, 1}4 using Equation
(6.6), after which the general case of abcd ∈ {0, 1, 2}4 follows, again from (6.6).
The Mathematica notebook provides a function Verify2sVanish that checks this
Lemma.

A final interesting note on the pw :

Lemma 6.4 If w′ is obtained from w by exchanging all 1s and 2s, then pw = −pw′ .

Proof A direct computation which you can verify using the Mathematica function
VerifyGraphSymmetry.

This ends the definition of S . We now prepare to prove that it has the properties
required to generate a subfactor planar algebra with principal graph H1 .

Lemma 6.5 The generator S is self-adjoint, has rotational eigenvalue −1 and is
uncappable:

S∗ = S, ρ(S) = −S, εi(S) = 0 for i = 1, . . . , 2k.

Lemma 6.6 The generator S and its “one-click” rotation ρ1/2(S) have the follow-
ing moments:

tr0

(
S2
)

= [9],

tr0

(
S3
)

= 0,

tr0

(
S4
)

= [9],

tr0

(
ρ1/2(S)3

)
= i

[18]√
[8][10]

.

Note that the scalars on the right sides of these equations actually refer to scalar
multiples of the empty diagram in GPA(Hp1)0,± . In particular, each of them is a
constant function on the even (or odd in the last case) vertices of the graph Hp1 .
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Proof of Lemma 6.5. Self-adjointness follows immediately from Equation (6.3).

To show ρ(S(γ)) = −S(γ), first note that σ(γ) and
∏16
i=1

1√
dγi

are independent of

the order of vertices appearing in γ = γ1 · · · γ16γ1 . Thus, recalling Example 1 from
§2.3,

ρ(S)(γ) =

√
dγ3dγ11
dγ9dγ1

S(γ3 . . . γ16γ1γ2γ3)

=

√
dγ3dγ11
dγ9dγ1

Cσ(γ)p ̂γ3...γ16γ1γ2γ3

1√
dγ11dγ3

16∏
i=1

1√
dγi

= Cσ(γ)(−pγ̂)
1√
dγ9dγ1

16∏
i=1

1√
dγi

= −S(γ)

where we used Equation (6.2) in the second to last step.

Next consider εi(S), the result of attaching a cap on strands i and i + 1. Since
we know S is a rotational eigenvector, we only need to check ε1(S) = ε2(S) = 0.
In particular, we don’t need to explicitly treat the more complicated cases of ε8(S)
and ε16(S), in which the cap is attached “around the side” of S , and the coefficients
coming from critical points in the graph planar algebra are more complicated.

Let Γk be the set of length-k loops on Hp1 , and γi denote the ith vertex of γ ∈ Γk .
The graph planar algebra formalism tells us that for ϕ ∈ Γ14 ,

εi(S)(ϕ) =
∑

γ ∈ Γ16 with
γj≤i=ϕj ,γi+2=ϕi

and γj≥i+3 = ϕj−2

√
dγi+1

dγi
S(γ)

We consider three cases, depending on whether the valence of ϕi is 1, 2 or 3.

If ϕi has valence 1, that is, it is an endpoint, then there is just one term in the
sum: if γi = v0 , then γi+1 = w0 , and if γi = zj , then γi+1 = aj . In the first case,
the collapsed loop γ̂ must be 00000000, so S(γ) = 0 by Equation (6.4). In the
second case, if γi = z1 then γ̂ must contain at least 4 consecutive 1s, so S(γ) = 0
by Equation (6.5). If γi = z2 , then γ̂ must contain at least 4 consecutive 2s, so
S(γ) = 0 by Lemma 6.3.

If ϕi has valence 2, that is, it lies on one of the arms, then there are two terms in
the sum, say γ+ and γ− . Moreover, the collapsed loops for the two terms are the
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same, and σ(γ+) = −σ(γ−). Thus

εi(S)(ϕ) = Cp
γ̂±

1√
dγ±1

dγ±9

√√√√ 14∏
j=1

1

dϕj
×

σ(γ+)
1√

dγ+i+1
dγ+i+2

√√√√dγ+i+1

dγ+i

+ σ(γ−)
1√

dγ−i+1
dγ−i+2

√√√√dγ−i+1

dγ−i


= Cp

γ̂±
1√

dγ±1
dγ±9

√√√√ 14∏
j=1

1

dϕj

 σ(γ+)√
dγ+i

dγ+i+2

+
σ(γ−)√
dγ−i

dγ−i+2

 = 0.

Since γ+
i = γ−i = γ+

i+2 = γ−i+2 = ϕi , the two terms in the parentheses cancel exactly.

Finally, if ϕi has valence 3, then it must be the triple point, c. There are then
three terms, say γ0 , γ1 and γ2 , with γji+1 = bj . Now the collapsed paths differ;
γ̂j = w1jw2 for some fixed words w1 and w2 . On the other hand, the signs σ(γj)
are all equal. Thus we obtain

εi(S)(ϕ) = Cσ(γj)
1√
d
γj1
d
γj9

√√√√ 14∏
j=1

1

dϕj

 p
γ̂0√

dγ0i
dγ0i+2

+
p
γ̂1√

dγ1i
dγ1i+2

+
p
γ̂2√

dγ2i
dγ2i+2

 .

Since γji = γji+2 = ϕi , the three terms in the parentheses cancel exactly by Equation
(6.6).

We now verify the moments of S are the Haagerup moments.

Computer-assisted proof of Lemma 6.6. We first treat the moments of S , and later
describe the changes required to calculate the moments of ρ1/2(S).

With multiplication given by the multiplication tangle from Figure 1, the vector
space GPA(H1)8,+ becomes a finite-dimensional semisimple associative algebra,
which of course must just be a multimatrix algebra. It is easy to see that the simple
summands are indexed by pairs of even vertices, and that the minimal idempotents
in the summand indexed by (s, t) are given by symmetric loops of length 16, which
go from s to t in 8 steps, then return the same way. Since there are 8 even vertices
(v0, x0, z0, b0, b1, b2, z1 and z2 ), there are 64 simple summands As,t , although four of
these (Av0,z1 ,Az1,v0 ,Av0,z2 , and Az2,v0 ) are trivial because s and t are more than 8
edges apart. Moreover, the trace tangle from Figure 1 composed with the partition
function puts a trace on each of these matrix algebras. We write As,t =

(
Mk×k,

dt
ds

)
to indicate there are k paths of length 8 from s to t, and that the trace of the identity
in Mk×k is dt

ds
k . We find that

(GPA(H1)8,+,multiplication tangle) ∼=
⊕
s,t

even vertices

As,t.

Now to compute the required moments, we just need to identify the image of S
in this multimatrix algebra, compute the appropriate powers via matrix multiplica-
tion, and take weighted traces. It turns out that the necessary calculation, namely
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taking kth powers of the matrices for S , for k = 2, 3 and 4, is actually computation-
ally difficult! First notice that some of the matrices are quite large, up to 118× 118.
Worse than this, the entries are quite complicated numbers, involving square roots
of dimensions, and so the arithmetic step of simplifying matrix entries after multi-
plication turns out to be extremely slow. One can presumably do these calculations
directly with the help of a computer, using exact arithmetic, but our implementa-
tion in Mathematica took more than a day attempting to simplify the matrix entries
in S4 before we stopped it. Instead, we choose a matrix (really, a multimatrix) A
so that all the entries of ASA−1 lie in the number field Q(λ); this matrix certainly
has the same moments as S , but once the computer can do its arithmetic inside a
fixed number field, everything happens much faster. In particular, the moments
required here take less than an hour to compute, using Mathematica 7 on a 2.4Ghz
Intel Core 2 Duo. See the remark following Definition 6.1 for an explanation of why
this trick works: we cooked up the matrix A with the desired property by compar-
ing the usual definition of the graph planar algebra with an alternative definition
that produces the corresponding “lopsided” planar algebra.

The matrix A is defined by

(As,t)π,ε = δπ=ε

8∏
i=1

√
dπi (6.8)

recalling that the matrix entries in As,t are indexed by pairs of paths π, ε from s to
t, so π = π1 · · ·π9 and ε = ε1 · · · ε9 with π1 = ε1 = s and π9 = ε9 = t. Notice that
the index in the product ranges from 1 to 8, leaving out the endpoint t.

Lemma 6.7 The entries of ASA−1 lie in Q(λ).

(The proof appears below.)

The second half of the Mathematica notebook referred to above produces the matri-
ces for ASA−1 (these, and the corresponding matrices for ρ1/2(S) described below,
are also available at http://tqft.net/EH/matrices in machine readable form and
as a PDF typeset for an enormous sheet of paper) and actually does the moment
calculation. Any reader wanting to check the details should look there. Here, we’ll
just indicate the schematic calculation:

tr
(
S2
)

(s) =
∑
t

dt
ds

tr
(
(Ss,t)

2
)

=
∑
t

dt
ds

tr
(
(As,tSs,tA

−1
s,t )

2
)

approximately 8 minutes later...
= [9]

tr
(
S3
)

(s) =
∑
t

dt
ds

tr
(
(Ss,t)

3
)

=
∑
t

dt
ds

tr
(
(As,tSs,tA

−1
s,t )

3
)

approximately 16 minutes later....
= 0
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tr
(
S4
)

(s) =
∑
t

dt
ds

tr
(
(Ss,t)

4
)

=
∑
t

dt
ds

tr
(
(As,tSs,tA

−1
s,t )

4
)

approximately 24 minutes later.....
= [9].

Note that in each case above we’re actually computing 8 potentially different num-
bers, as s ranges over the even vertices of the graph.

The moments of ρ1/2(S) can be calculated by a very similar approach. The other
8-box space GPA(H1)8,− becomes a multimatrix algebra with summands indexed
by pairs of odd vertices on the graph H1 .

Lemma 6.8 The entries of As,tρ1/2(S)s,tA
−1
s,t lie in d ·Q(λ).

(Again, the proof appears below.)

We thus compute

tr
(
ρ1/2(S)3

)
= d3tr

(
(d−1As,tρ

1/2(S)s,tA
−1
s,t )

3
)
.

As before, this is implemented in Mathematica. The calculation takes slightly longer
than in the first case. The details can be found in the notebook.

Proof of Lemma 6.7 Let t denote concatenation of paths, and ε̄ be the reverse of
the path ε. We readily calculate

(As,tSs,tA
−1
s,t )π,ε = Cσπtε̄pπ̂tε̄

1√
dsdt

8∏
i=1

1√
dπi

9∏
i=2

1√
dεi

∏8
i=1

√
dπi∏8

i=1

√
dεi

=
Cσπtε̄pπ̂tε̄∏9

i=1 dεi

Most of the factors in this product are already in Q(λ); the one in question is∏9
i=1 dεi . All even dimensions are in Q[d2] = Q[λ2], and all odd dimensions are

in d · Q[λ2]. So the product
∏9
i=1 dεi , a product of five even and four odd dimen-

sions, lies in d4Q[d2] ⊂ Q(λ) and

(ASA−1)γ,ε ∈ Q(λ).

Proof of Lemma 6.8 First, we have

ρ1/2(S)(γ1γ2 · · · γ16γ1) =

√
dγ2dγ10
dγ9dγ1

S(γ2 · · · γ16γ1γ2)

=

√
dγ2dγ10
dγ9dγ1

Cσ(γ)p ̂γ2···γ16γ1γ2
1√

dγ2dγ10

16∏
i=1

1√
dγi

= Cσ(γ)p ̂γ2···γ16γ1γ2
1√
dγ1dγ9

16∏
i=1

1√
dγi

.
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Be careful here: although this looks very similar to the formula in Equation (6.1)
for S , the path γ here starts at an odd vertex.

We now conjugate by a multimatrix A that has exactly the same formula for its
definition as appears in Equation (6.8), except again the paths γ and ε start and
finish at odd vertices. We obtain

(As,tρ
1/2(S)s,tA

−1
s,t )π,ε =

rσπtε̄p ̂ε2π1···π8ε9···ε2∏9
i=1 dεi

.

One readily checks that these matrix entries are in d ·Q(λ).

We’ve finally shown the existence and uniqueness of the extended Haagerup sub-
factor. Uniqueness is Theorem 3.9. By Lemma 6.5 and Lemma 6.6, S satisfies the
hypotheses of Proposition 3.12. Therefore PA(S) is a subfactor planar algebra with
principal graphs H1 .

A Fusion categories coming from the extended Haagerup
subfactor

The even parts of a subfactor are the unitary tensor categories of N−N and M−M
bimodules respectively. Hence every finite depth subfactor yields two unitary fu-
sion categories. In terms of the planar algebra, the simple objects in these categories
are the irreducible projections in the box spaces P2m,± for some m.

In the case of extended Haagerup, the global dimension of each of these fusion
categories is the largest real root of x3 − 585x2 + 8450x − 21125 (approximately
570.247). The fusion tables are given in Figures 8 and 9.

1 f (2) f (4) f (6)
P A

Q B

⊗ f (2) f (4) f (6) P Q A B

f (2) 1+f (2)+f (4) f (2)+f (4)+f (6) f (4)+W B+W A+W Q P

f (4) f (2)+f (4)+f (6) 1+f (2)+

f (4)+W

f (2)+f (4)+
A+B+2W

f (4)+A+2W f (4)+B+2W f (6)+P f (6)+Q

f (6) f (4)+W
f (2)+f (4)+
A+B+2W

1+W+Z f (6)+Q+Z f (6)+P+Z f (4)+B+W f (4)+A+W

P A+W f (4)+B+2W f (6)+Q+Z 1+P+Z f (6)+Z f (2)+A+W f (4)+W

Q B+W f (4)+A+2W f (6)+P+Z f (6)+Z 1+Q+Z f (4)+W f (2)+B+W

A P f (6)+Q f (4)+B+W f (4)+W f (2)+A+W f (6) 1+P

B Q f (6)+P f (4)+A+W f (2)+B+W f (4)+W 1+Q f (6)

Figure 8: The simple objects and fusion rules for the N−N fusion category coming
from the extended Haagerup subfactor. We use the abbreviations W = f (6) +P +Q
and Z = A+B + f (2) + 2f (4) + 3f (6) + 3P + 3Q.
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1 f (2) f (4) f (6)
P ′

Q′

⊗ f (2) f (4) f (6) P ′ Q′

f (2) 1+f (2)+f (4) f (2)+f (4)+f (6) f (4)+f (6)+P ′+Q′ f (6)+2P ′+Q′ f (6)+P ′

f (4) f (2)+f (4)+f (6) 1+f (2)+f (4)

+f (6)+P ′+Q′
f (2)+f (4)+2f (6)

+3P ′+Q′
f (4)+3f (6)

+3P ′+2Q′
f (4)+f (6)

+2P ′+Q′

f (6) f (4)+f (6)+P ′+Q′
f (2)+f (4)2f (6)

+3P ′+Q′
1+f (2)+2f (4)

+4f (6)+5P ′+3Q′
f (2)+3f (4)+5f (6)

+6P ′+3Q′
f (2)+f (4)+3f (6)

+3P ′+2Q′

P ′ f (6)+2P ′+Q′
f (4)+3f (6)

+3P ′+2Q′
f (2)+3f (4)+5f (6)

+6P ′+3Q′
1+2f (2)+3f (4)

+6f (6)+7P ′+4Q′
f (2)+2f (4)+3f (6)

+4P ′+2Q′

Q′ f (6)+P ′
f (4)+f (6)

+2P ′+Q′
f (2)+f (4)+3f (6)

+3P ′+2Q′
f (2)+2f (4)+3f (6)

+4P ′+2Q′
1+f (4)+2f (6)

+2P ′+Q′

Figure 9: The simple objects and fusion rules for the M−M fusion category coming
from the extended Haagerup subfactor.
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