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The Blob Complex, part 2

Kevin Walker
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Goals:

* n-category definition optimized for TQFTs (prove gluing
theorem, blob complex product theorem)

* should be very easy to show that topological examples satisfy
the axioms

* as simple as possible (but not simpler)

* both plain and infinity type categories

* also define modules, coends, tensor products, etc.
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* n-category definition optimized for TQFTs (prove gluing
theorem, blob complex product theorem)

* should be very easy to show that topological examples satisfy
the axioms

* as simple as possible (but not simpler)

* both plain and infinity type categories

* also define modules, coends, tensor products, etc.

Main ideas:

* don'’t skeletonize (don’t try to minimize generators, don’t try to
minimize relations)

* build in “strong” duality from the start

* non-recursive (don’t need to know what an (n-1)-category is)




Ingredients for an n-category:
| . morphisms in dimensions 0 through n
2. domain/range/boundary
3. composition
4. identity morphisms

5. special behavior in dimension n
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* Need to decide on “shape” of morphisms
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* Need to decide on “shape” of morphisms
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* We will allow morphisms to be of any shape, so long as
it is homeomorphic to a ball




Morphisms (preliminary version): For any k-manifold X homeomorphic to the
standard k-ball, we have a set of k-morphisms Ci(X).




Morphisms: For each 0 < k < n, we have a functor C; from the category of k-balls

and homeomorphisms to the category of sets and bijections.




standard k-b have a set o

Morphisms: For each 0 < k < n, we have a functor C,. from the category of k-balls
and homeomorphisms to the category of sets and bijections.

Balls could be PL, topological, or smooth. Also unoriented, oriented,
Spin, Pin.. We will concentrate on the case of PL unoriented balls.




Examples

Let T" be a topological space.

Cr(X*) = Maps(X — T, for k < n, X a k-ball.

Cn(X™) = Maps(X — T') modulo homotopy rel boundary
(fundamental n-groupoid of 7')

Cr(X*) = Maps(X — T, for k < n, X a k-ball.
C.(X") = C,(Maps(X — T')) (singular chains)

(0o version of fundamental groupoid of 7)




Cr(X*) = {embedded decorated cell complexes in X}, for k < n.
C.(X") = {embedded decorated cell complexes in X} modulo isotopy and
other local relations

. L More examples

M ,,f'

Ir':";.- -.\,x{r'
(O

(Kuperberg)




More examples

Let A be a traditional linear n-category with strong duality (e.g. pivotal
2-category).

Ci(X*) = {A-string diagrams in X}, for & < n.

C.(X") = {finite linear combinations of A-string diagrams in X } modulo di-
agrams which evaluate to zero

Cx(X*) = {A-string diagrams in X}, for k < n.
C.(X™) = blob complex of X based on A-string diagrams




Boundaries (domain and range), part 1: For each 0 < k < n — 1, we have a
functor Cr from the category of k-spheres and homeomorphisms to the category of
sets and bijections.
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Boundaries (domain and range), part 1: For each 0 < k < n — 1, we have a

functor Cr from the category of k-spheres and homeomorphisms to the category of
sets and bijections.

Boundaries, part 2: For each k-ball X, we have a map of sets 9 : C(X) — C(0X).
These maps, for various X, comprise a natural transformation of functors.

Domain + range — boundary: Let S = By Ug Bs, where S is a k-sphere (0 <
k<n—1), B; is a k-ball, and E = By N By is a k—1-sphere. Let C(B1) x¢(p) C(B2)
denote the fibered product of the two maps 0 : C(B;) — C(E). Then (aziom) we
have an injective map

glp : C(B1) X¢ ) C(Bz2) — C(S)

which is natural with respect to the actions of homeomorphisms.
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o Let C(S)r C C(S) denote the image of gl

def

e Given c € C(0(X)), let C(X;c) = 0 (c)

&

def

e Given E C 0X,let C(X)g = 07HC(0X)E)

e In most examples, we require that the sets C(X;c) (for all n-balls X
and all boundary conditions ¢) have extra structure, e.g. vector space
or chain complex




Composition: Let B = By Uy Bs, where B, By and By are k-balls (0 < k <n) and
Y =BiNByisak—1-ball. Let E = 0Y, which is a k—2-sphere. Note that each of
B, B1 and By has its boundary split into two k—1-balls by E. We have restriction
(domain or range) maps C(B;)g — C(Y). Let C(B1)e Xe(v) C(Bz2)r denote the
fibered product of these two maps. Then (axiom) we have a map

gly : C(B1)E X¢v) C(B2)e — C(B)g

which is natural with respect to the actions of homeomorphisms, and also compatible
with restrictions to the intersection of the boundaries of B and B;. If k < n we
require that gly is injective. (For k = n, see below.)
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| Multi-composition: Given any decomposition B = B1 U---U B, of a k-ball into l
small k-balls, there is a map from an appropriate subset (like a fibered product) of
C(B1) x - xC(By,) to C(B), and these various m-fold composition maps satisfy an

I operad-type strict associativity condition. I
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Product (identity) morphisms: Let X be a k-ball and D be an m-ball, with
k+m < n. Then we have a map C(X) — C(X x D), usually denoted a — a x D for

ecC(X). Iff: X - X' and f: X x D — X' x D' are maps such that the diagram

XED—JG}X’::{D’

.

X » X'

commutes, then we have

fla x D)= f(a) x D'
Product morphisms are compatible with gluing (composition) in both factors:
(' x D) e (a" x D)= (a’ea")x D
and
(ax D')e(axD")=ax (D eD").
Product morphisms are associative:

(a x D) x D' =ax (D x D".

(Here we are implicitly using functoriality and the obvious homeomorphism (X X
D) x D' — X x (D x D').) Product morphisms are compatible with restriction:

resxxplax D)=ax E

for E C 0D and a € C(X).




We need something a little more general
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We need something a little more general
than plain products

iy

“extended isotopy”
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Plain n-cat:

Extended isotopy invariance in dimension n: Let X be an n-ball and f :
X — X be a homeomorphism which restricts to the identity on 0X and is extended
isotopic (rel boundary) to the identity. Then [ acts trivially on C(X).




Plain n-cat:

Extended isotopy invariance in dimension n: Let X be an n-ball and f :
X — X be a homeomorphism which restricts to the identity on 0X and is extended
isotopic (rel boundary) to the identity. Then [ acts trivially on C(X).

Infinity n-cat:

Families of homeomorphisms act in dimension n. For each n-ball X and each
c € C(0X) we have a map of chain complexes

C.(Homeoy(X)) ® C(X;c) — C(X;c).

Here C, means singular chains and Homeog(X) s the space of homeomorphisms of
X which fir 0X. These action maps are required to be associative up to homotopy,
and also compatible with composition (gluing).




Equivalences between this n-cat definition and more
traditional ones (at least for n=1 or 2)
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Colimit construction

e Let C be in n-category.

¢ We want to extend C to arbitrary k-manifolds ¥, 0 < k < n.
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Colimit construction

e Let C be in n-category.

¢ We want to extend C to arbitrary k-manifolds ¥, 0 < k < n.

e Let J be the category (partially ordered set) whose objects are de-
compositions of Y into balls and who morphisms are anti-refinements
(coarsenings) of these decompositions.

e There is functor which assigns to a decomposition ¥ = [ J, X; the set
(or vector space or chain complex) ), C(X;).

e Define C(Y') to be the colimit (or homotopy colimit) of this functor.
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Newfangled blob complex

e Given an A_, n-category C, we define the newfangled blob complex of
an n-manifold M to be the above homotopy colimit C(M).
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Newfangled blob complex

e Given an A, n-category C, we define the newfangled blob complex of
an n-manifold M to be the above homotopy colimit C(M).

e Given a plain n-category C, we can construct an A, n-category D by

defining D(X) = BY(X) for each n-ball X.

e D is in some sense the free resolution of ' as an A_, n-category.

e Let M™" = F" % x Y*, Let C be a plain n-category. Let F be the A,
k-category which assigns to a k-ball X the old-fashioned blob complex
BY(X x F).

e Theorem: F(Y) ~ BY(F xY).

e Corollary: D(M) ~ BY(M) for any n-manifold M. (Proof: Let F
above be a point.) So the old-fashioned and newfangled blob complexes
are homotopy equivalent.
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Modules

e Let C be an n-category.

e Modules for C are defined in a similar style.

o A marked k-ballis a pair (B, M ) which is homeomorphic to the standard
pair (B*, B¥™1).

e A C-module M is a collection of functors M, from the category of
marked k-balls to the category of sets, 0 < k < n.

e In the top dimension n we have the same extra structure as C (vector
space, chain complex, ...).




e Motivating example: Let W be an m+1-manifold with non-empty
boundary. Let £ be an m+n-category.

e Let C be the n-category with C(X) d——ﬂf E(X x OW).




e Motivating example: Let W be an m+1-manifold with non-empty
boundary. Let £ be an m+n-category.

e Let C be the n-category with C(X) = E(X x OW).
e Define the C-module M by

M(M,B) £ g ((B xow) ) (M x W)) .

M x W




e T'wo different ways of cutting a marked k-ball into two pieces, so two
different kinds of composition. (One is composition within M, the
other is the action of C on M.)
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e T'wo different ways of cutting a marked k-ball into two pieces, so two
different kinds of composition. (One is composition within M, the
other is the action of C on M.)
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e T'wo different ways of cutting a marked k-ball into two pieces, so two
different kinds of composition. (One is composition within M, the
other is the action of C on M.)

e Various kinds of mixed strict associativity.
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e M can be thought of as a collection of n—1-categories with some extra
structure.




e T'wo different ways of cutting a marked k-ball into two pieces, so two
different kinds of composition. (One is composition within M, the
other is the action of C on M.)
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e Various kinds of mixed strict associativity.
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e M can be thought of as a collection of n—1-categories with some extra
structure.

e For n = 1,2 this is equivalent to the usual notion of module.




Decorated colimit construction

e Let W be a k-manifold. Let Y; be a collection of disjoint codimension
0 submanifolds of 9W.

e Let C be an n-category and N' = {N;} be a collection of C-modules,
thought of as labels of {Y;}.
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Decorated colimit construction

e Let W be a k-manifold. Let Y; be a collection of disjoint codimension
0 submanifolds of 9W.

e Let C be an n-category and N' = {N;} be a collection of C-modules,
thought of as labels of {Y;}.

e We can use a variation on the above colimit construction to define a
set (or vector space or chain complex if k = n) C(W,N).

e The object of the colimit are decompositions of W into (plain) balls X
and marked balls (B;, M;), with M; = B; N {Y;}.

e This defines an n—k-category which assigns C(D x W, ) to a ball D.
(Here N labels D x Y;.)




Tensor products and gluing

e As a simple special case of this construction, given C-modules N and
N5, define the tensor product N7 ® Ny (an n—1-category) to be the

result of taking W to be an interval and letting N; and A5 label the
endpoints of the interval.
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Tensor products and gluing

e As a simple special case of this construction, given C-modules N and
N5, define the tensor product N7 ® Ny (an n—1-category) to be the

result of taking W to be an interval and letting N; and A5 label the
endpoints of the interval. /
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¢ (Gluing theorem: Let M™% = M; Uy M,. Let C be an n-category. The
above constructions give a k-category C(M ), a k—1-category C(Y'), and
two C(Y )-modules C(M;). Then

C(M) ~ C(Ml) ®C[F) C(Mg)







