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1 Introduction

In this note we prove the following result

Theorem 1.1 Every subfactor planar algebra P embeds in the graph planar algebra
of its principal graph.

This theorem has been known to Vaughan Jones since he first defined the graph
planar algebra (indeed, he’s said “if the theorem hadn’t been true, I would have
had to change the definition of the graph planar algebra”) but a proof has not yet
appeared in print. In fact, nearly simultaneously with the publication of this note,
Dave Penneys and Vaughan Jones will publish an alternative proof [].

Here, however, it is most convenient to prove a more general theorem. First, we deal
with all sorts of semisimple planar algebras, not just the subfactor planar algebras.
This includes the case of fusion categories. The paper begins in §?? with a definition
of a G-planar algebra, for G a directed graph with an involution, that encompasses
several previously used variants of the graph planar algebra formalism. Second, we
work over an arbitrary field (the theorem above is implicitly over C). If a planar
algebra P over a field k has a complete rational form (in the sense of [6]), then we
can embed it in the graph planar algebra over that same field of its principal graph.

This theorem has already provided impetus for the construction of several subfactor
planar algebras. Knowing that we could find the extended Haagerup subfactor
planar algebra inside the appropriate graph planar algebra, we were motivated to
use a computer to identify the subalgebra. This resulted in the construction, with
Stephen Bigelow, Emily Peters and Noah Snyder that appeared in [2]. In fact, this
construction was inspired by Emily Peters’ thesis work [7] identifying the Haagerup
subfactor planar algebra inside the appropriate graph planar algebra.

Soon, we expect obstructions to the existence of subfactor planar algebras on the
basis of this theorem. Making certain assumptions about the principal graph we
can show that there ‘isn’t room’ inside the graph planar algebra for a nontrivial
subfactor planar algebra. We know of one such obstruction, but more powerful ones
may be around the corner.

The proof presented here was first discovered by realising that the Turaev-Viro state
sum invariant associated to a subfactor planar algebra naturally gave a map into
the graph planar algebra of its principal graph. The formal properties (specifically,
the gluing formulas) for the Turaev-Viro invariant ensure that this map is a map of
graph planar algebras. However, we then realised that it is possible to describe the
resulting map directly, and in fact easier to check that it is a map of planar algebras
straight from the definition. We include at the end §5 describing the connection
between the map described here and the Turaev-Viro map.

TODO: acknowledgements
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2 Graph planar algebras

Fix a field k.

We’ll begin by defining a very general class of planar algebras, with an arbitrary set
of strand labels and region labels. Each strand label has a pair of corresponding
region labels. We encode all this data as a bidirected graph.

Definition 2.1 A bidirected graph is a finite directed graph together with an
involution (called duality) of the edges that reverses sources and targets.

Sometimes we’ll abbreviate a pair of dual edges by a single undirected edge. In the
following, all of our graphs are bidirected graphs.

Definition 2.2 Let G be a bidirected graph. A G-planar tangle consists of a
disc, with some number of embedded inner discs, all with a marked point on
their boundaries, along with strands in the complementary region which are either
embedded circles or embedded intervals meeting the boundaries of the discs, with a
labelling of the regions between the strands by vertices of G, and a labelling of the
strands by a pair consisting of an edge of G between the vertices on either side and
its reversal.

Given a G-planar tangle T we will write T0 for the cycle in G appearing (always
reading counterclockwise, from the marked point) around the outer boundary of T ,
and Ti for the cycle appearing around the boundary of the i-th inner disc of T .

Definition 2.3 Given a bidirected graph G, a G-planar algebra P consists of

• a k-vector space Pg for each loop g on G, and

• a multilinear map P(T ) : ⊗PTi → PT0 for each G-planar tangle T ,

such that the maps only depend on the G-planar tangle up to isotopy, and the usual
associativity constraints for planar algebras hold.

If all the vector spaces Pg , for g a length zero loop (that is, just a vertex), are
1-dimensional, we say P is evaluatable (because every closed diagram can be ‘evalu-
ated’ as a multiple of the empty diagram). These 1-dimensional vector spaces are
canonically identified with k, sending the empty diagram to 1.

Example 1 The most familiar example of a shaded planar algebra is in this language
a -planar algebra (where the involution switches the edges). An unshaded oriented
planar algebra is a -planar algebra (where the involution switches the edges).
An unshaded unoriented planar algebra is a -planar algebra (where the involution
fixes the edge).

Example 2 (Kuperberg’s spider for su3 ) Since Kuperberg’s spider for su3 has a
single oriented strand type, it is naturally a -planar algebra. However, since
the representation theory of su3 is graded by Z(SU(3)) = Z/3Z, we can in fact
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3-color the regions, and think of it as a -planar algebra. This has an obvious

generalisation to the representation theory of sun , which is Z/nZ graded. It is a
Cn -planar algebra when only the standard representation is allowed as a strand label,
or a Kn -planar algebra when all fundamental representations are allowed.

Example 3 (Intermediate subfactors) Given a diagram G of inclusions of II1

subfactors, the intertwiners of tensor products of the corresponding bimodules are
naturally a G-planar algebra.

If the loop labelled by a directed edge e pointing from the outer region to the inner
region is some multiple δe of the empty diagram we say P has e-modulus δe . In a
shaded planar algebra the “spherical” axiom asks that the moduli are equal, while
for a “lopsided” planar algebra we ask that one of the moduli is equal to 1.

Given a bidirected graph homomorphism π : Γ → G we can take any Γ-planar
algebra P and ‘collapse along π ’ to form a G-planar algebra π∗P . This is defined
by

(π∗P)g =
⊕

γ∈π−1(g)

PΓ
γ

and
(π∗P)(S) =

∑
T∈π−1(S)

PΓ(T ).

Here we implicitly think of π as a map taking cycles in Γ to cycles in G, and also
as a map sending Γ-planar tangles to G-planar tangles by applying π to all strand
and region labels.

Example 4 Collapsing along the obvious homomorphism from to takes
a shaded planar algebra and produces an oriented planar algebra, in which all spaces
are zero except those where the boundary labels alternate incoming and outgoing, and
the action of oriented planar tangles is determined by first filling in the checkerboard
shading, and then acting.

Example 5 Collapsing along the homomorphism from to takes an oriented
planar algebra P and produces an unoriented planar algebra Q, where the vector
space Qk is the direct sum of the vector spaces for P corresponding to the 2k

different loops of length k on .

TODO: This paragraph needs more explanation, and some thought as to
whether it’s nonsense or not. Fix a graph homomorphism π : Γ → G and a
modulus δe ∈ k for each edge of G. Dimension data d for (π, δ) is an assignment
d(v) ∈ k for each vertex of Γ such that for each edge a→ b of G we have

d(A)δa→b =
∑

(A→B)∈π−1(e)

d(B)

for each vertex A ∈ π−1(a) of Γ, and

d(B)δa→b =
∑

(A→B)∈π−1(e)

d(A)
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for each vertex B ∈ π−1(b). If d is positive on every vertex then we say that d is
Perron-Frobenius dimension data for π . If such d exists, it is uniquely determined
up to a normalization on each connected component. If Γ has a base point in each
connected component, we always choose the Perron-Frobenius dimension data with
d(?) = 1 for each base point ?.

Example 6

1
?
τ τ 1 →

τ

τ

is Perron-Frobenius dimension data for the A4 digraph with spherical modulus, while

1
?

1 τ τ −1

→
1

τ2

is Perron-Frobenius dimension data for lopsided modulus. In both cases, we’ve
written the dimension data next to vertices on the initial graph, and the modulus of
each edge on the final graph.

Example 7 Perron-Frobenius dimension data for a particular graph homomorphism
(see Example 13 below for motivation). Here each arrow has a corresponding dual
arrow, which we’ve omitted for clarity. There are two parallel arrows from the white
vertex to the gray vertex.

1

22

111

→

2

22

Example 8 Let d =
√

5+
√

13
2 . Lopsided dimension data for the Haagerup graph

with moduluses 1 and d2 exists over the field Q(
√

13) = Q(d2),

1

1

1

1

1

1

d2 − 1
d2 − 1

d2 − 1

d2 − 2
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while for spherical dimension data with modulus d we need to extend the field to
include d:

1

1

1

d

d

d

d2 − 1
d2 − 1

d2 − 1

d3 − 2d

Definition 2.4 The trivial planar algebra G(Γ, d) on a bidirected graph Γ with
dimension data d is a Γ-planar algebra. The vector spaces G(Γ)γ are all just k. For
any planar tangle T , choose an isotopy representative so all strands attach only
along the bottom halves of the discs, with each disc’s starred region on the right.
Since all our vector spaces are 1-dimensional, the multilinear map associated to a
planar tangle is just a number, given by

G(Γ)(T ) =
∏

critical
points c

d(c+)sign(c).

Here c+ is the vertex of Γ appearing above the critical point c.

One checks that this satisfies the axioms of a planar algebra in the usual way, see
e.g. [4]. Note however that this definition is not the usual one, even in the “shaded”
case: we’ve rearranged the critical point coefficients slightly. This rearrangement is
essential, however, if we expect to work over an arbitrary field: the definition in [4]
takes square roots of dimensions.

Definition 2.5 The graph planar algebra G(π) for a homomorphism π : Γ→ G of
bidirected graphs with base points is the G-planar algebra obtained by collapsing
the trivial planar algebra for Γ with Perron-Frobenius dimension data along π :

G(π) = π∗G(Γ, dPF).

Unravelling the definition, we have for g a cycle in G

G(π)g = {based directed cycles on Γ over g}∗

and

G(π)(T )
(⊗

fi

)
=

∑
Γ-labels
` of T

 ∏
critical
points c

d(c+(`))sign(c)


(∏

i

fi(`)

)
.

Here a Γ-label of T is a lifting of the specified labelling of T (recall, regions by
vertices of G, strands by edges by G) to a labelling by Γ, d(c+(`)) is the Perron-
Frobenius dimension of the vertex of Γ appearing above the critical point c in the
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labelling `, and fi(`) is the functional fi evaluated on the cycle in Γ given by
reading the labelling ` around the boundary of the i-th inner disc. We’ve chosen to
write the vector spaces as functionals on directed cycles, rather than formal linear
combinations, for notational convenience below.

3 Pivotal 2-categories and planar algebras

[not exactly sure but sprinkle semisimple and degenerate below]

In this section we recall the now familiar translation between pivotal categories
and unshaded planar algebras, and give the generalized translation between pivotal
2-categories and G-planar algebras as described above. This section serves a double
purpose: the embedding map will be easier to describe if we allow ourselves to move
freely between the two descriptions, and we want to make clear that the embedding
theorem is relevant for all (pseudo-unitary) pivotal 2-categories.

We assume all our categories are linear, so all morphism spaces are finite dimensional
k-vector spaces, and moreover that they are additive, so all direct sums of objects
exist. (If a linear category is not additive, we can always embed it in the matrix
category which has direct sums.) When discussing 2-categories, linear means that
the 2-morphism spaces are vector spaces, and that direct sums of 1-morphisms exist.

All our 2-categories are strictly associative. We always write compositions of 1-
morphisms using ⊗, so tensor categories are simply 2-categories with a single
0-morphism. The axioms for pivotal categories from [1] generalize immediately to
give a definition of pivotal 2-categories (we interpret pivotal categories as 2-categories,
then relax the requirement that there is only one 0-morphism). Throughout, we
assume all our pivotal categories are strictly pivotal (that is, the double dual functor
is the identity, not just naturally isomorphic to the identity).

Fix a pivotal 2-category C , and suppose X is a finite set of dominant simple 1-
morphisms (so every simple 1-morphism is a summand of some tensor product of
elements of X ) which is closed under duals. We can consider X as the edges of a
bidirected graph. Associated to C and X is a X -planar algebra.

Definition 3.1 The X -planar algebra P(C,X ) has vector spaces

P(C,X )k = HomC (k,1) .

Here we interpret a directed cycle k on X as the corresponding tensor product of
1-morphisms in C . The multilinear maps for tangles are given by choosing an isotopy
representative in which all strands attach only along the bottom halves of the discs,
then interpreting the diagram as an element of the 2-category by replacing critical
points in strands with the evaluation and coevaluation maps in the usual manner.

Going in the other direction, given a X -planar algebra P we can define a pivotal
2-category C(P). We make an intermediate definition first.

Definition 3.2 The pivotal 2-category Č(P) has

objects vertices of X ,
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1-morphisms HomČ(P) (a, b) = {paths on X from a to b},

2-morphisms HomČ(P) (λ, µ) = Pµ̄λ , where µ̄ denotes the involute of µ, and µ̄λ
is the concatenation of µ̄ and λ

where composition, tensor products and duality are all given by the obvious corre-
sponding X -planar tangles.

Definition 3.3 The pivotal 2-category C(P) is the idempotent completion of Č(P).

If P ∈ Pλ̄λ and Q ∈ Pµ̄µ are idempotents (with respect to the multiplication tangles)
in a X -planar algebra P , with λ and µ paths in X with the same start and end
points, we have the notion of the Hom-space between them, the subspace of Pλ̄µ
given by

HomP (P,Q) =
{
f ∈ Pλ̄µ | fP = f = Qf} .

(In fact P and Q are 1-morphisms in the associated 2-category C(P), and this just
translates the Hom-space of the idempotent completion back to the planar algebraic
description.)

A [semisimple] 2-category C is pseudo-unitary if the Perron-Frobenius dimensions of
objects and the quantum dimensions coincide. Note that if C is unitary then it is
automatically semisimple, non-degenerate and pseudo-unitary.

Example 9 (Rep g) Fix a complex semisimple Lie algebra g. As ⊗-categories,
Rep g, RepUg and RepUqq are all equivalent. In each case, the irreducible repre-
sentations with highest weight a fundamental weight ⊗-generate the category. Let χ
be the graph with a single vertex and an edge for each fundamental representation of
g (and the representation theoretic duals). From Rep g we can construct a χ-planar
algebra, which we call FundRep g.

Example 10 (Rep g graded by Z(G)) Since the ⊗-product in Rep g is graded
by the group Z(G), the centre of the corresponding simply connected compact Lie
group (equivalently, the group of weight vectors modulo root vectors), we can think
of Rep g as a 2-category with objects Z(G). (Each 1-morphism space is just a copy
of Rep g, and composition of 1-morphisms is ⊗-product.) Now, we can take the
graph χZ with vertices Z(G), and an edge from a to b for each fundamental weight
λ such that a+λ = b in Z(G). Again, we can construct a χZ -planar algebra, which
we call FundRepZ g.

Definition 3.4 A quantum subgroup of g is a χ-planar algebra P in the sense of
Example 9, along with a map FundRepUqg→ P .

Definition 3.5 A graded quantum subgroup of g is a χZ -planar algebra P in the
sense of Example 10, along with a map FundRepZ Uqg→ P .

Remark. Collapsing along the graph homomorphism χZ → χ allows us to forget the
grading on a quantum subgroup of g.
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Example 11 A graded quantum subgroup of su2 is just a spherical shaded planar
algebra with modulus [2]q . If [2]q < 2, then there is an ADE classification. A
quantum subgroup is an oriented unshaded planar algebra with modulus [2]q , and if
[2]q < 2 there is an ADET classification. See [5] for details.

Example 12 A graded quantum subgroup of su3 is a

[3]q

[3]q[3]q -planar algebra

which contains (a quotient of) Kuperberg’s Uqsu3 spider. See [3] for the related
notion of an A2 -planar algebra.

4 The embedding map

[Not sure where these go:]

Lemma 4.1

A

?

B

? =
1
de

Proof The morphisms A and B are each endomorphisms of the simple object e,
and so are just k multiples of the identity.

Given idempotents APB,AQC and BXC in a G-planar algebra P (here the subscripts
A,B and C denote vertices of G, indicating the left and right shadings of the
idempotents; equivalently, interpreting the idempotents as 1-morphisms in the
corresponding 2-category, they are the sources and targets) there is a pairing

(−,−)P,Q,X : HomP (Q,P ⊗X)⊗HomP (P,Q⊗X∗)→ End (Q)

given by

(a, b) = a ◦ (b⊗ 1X) ◦ (1Q ⊗ coevX)

= a

Q

P X

b

Q X∗ X

.

If Q is simple, End (Q) is 1-dimensional, canonically identified with k. In this case
the pairing (−,−)P,Q,X is non-degenerate as long as P itself is non-degenerate.

Definition 4.2 The principal graph Γ(P) of a nondegenerate G-planar algebra is
a bidirected graph fibered over G, which has
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vertices a minimal idempotent in P from each isomorphism class,

edges from P to Q over X ∈ G corresponding to a basis of HomC (Q,P ⊗X) and

involution sending a basis element of HomC (Q,P ⊗X) to the dual k-basis element
with respect to the pairing (−,−)P,Q,X in HomP (P,Q⊗X∗).

TODO: explain why it’s always possible to choose bases so the involution
works like this

We’re explicitly choosing bases for Hom-spaces in this definition of the principal
graph; a more usual definition would just have finite sets of edges with the same
cardinality. We will make use of these extra choices in our construction of the
embedding map. In the case that Γ is simply-laced (that is HomC (Q,P ⊗X) is
always 1-dimensional) choosing a basis is just a choice of normalization: note that
these choices nevertheless affect the embedding map below.

The principal graph splits into components according to the region label at the
marked point of the idempotents. Each of these components is connected (if Q is
an idempotent in Pλ̄◦λ then there is a path from the tensor identity to Q in the
principal graph that descends to λ), and moreover has a distinguished vertex given
by the tensor identity, so Γ(P) comes with Perron-Frobenius data.

Example 13 The representation theory of Uqsu3 at q a 12th root of unity is
modular with the usual pivotal structure, but not modular with the unimodal pivotal
structure. In particular, there are three invertible objects with twist factor 1, those
with highest weights 00, 30 and 03. The modular quotient (equivalently, the Müger
deequivariantization by the subcategory of invertible objects) is a graded quantum
subgroup of su3 in the sense of Example 12. The graph of Example 7 is the principal
graph.

Example 14 The modular quotient of unimodal Uqsu3 at q a 14th root of unity
can be realised as a quantum subgroup of su3 , but not as a graded quantum subgroup.
This is because the subcategory of invertible objects is not concentrated in the trivial
component of the Z(G)-grading. Its principal graph is TODO: .

The full classification of quantum subgroups of su3 with q a root unity has been
announced by Ocneanu.

Consider now a loop γ in Γ(P) for P a G-planar algebra, with image χ in G under
Γ(P) → G. This gives a sequence of idempotents and maps between them in P .
We’ll write γi for the i-th vertex of γ , which is a minimal idempotent in P . Write
χi for the edge of χ from the vertex i to the vertex i+ 1 in G (recall the edges of
G are the strand labels for P ). (Notice that γi is a vertex of Γ(P) while χi is an
edge of G.) For notational compactness in diagrams, we’ll often introduce a second
symbol to refer to the edges of γ . Thus when we say ‘let γ be a loop with edges ai ’
we mean that ai is the edge between the vertex i and vertex i+ 1 in γ , which is a
basis element for HomP (Pi+1, Pi ⊗ χi).
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Definition 4.3 The graph planar algebra embedding map E : P ↪→ G(Γ(P)) for a
non-degenerate evaluatable G-planar algebra P is given by

E(S)(γ) =

S ?

a0

?

χ0

a1

?

χ1

a2

?

χ2

an

?

χn

γ1 γ2

γ0

γ0

,

where S ∈ Pχ , with χ a loop in G of length n+ 1 and γ is a loop in Γ(P) which
descends to χ with edges ai . The loop labelled by γ0 appearing in the denominator
is the quantum dimension of the idempotent γ0 .

Remark. At this point, we only require that P be non-degenerate so that dimq γ0 6= 0.
We’ll need non-degeneracy for Theorem 4.4 and Theorem 4.10, however.

Theorem 4.4 The map E is a map of planar algebras.

Proof We first observe that every planar tangle can be written as composition of a
collection of the four elementary tangles described below. Lemmas 4.6 through 4.9
then establish that E commutes with each of these elementary tangles.

Lemma 4.5 Every G-planar tangle can be expressed as a composition of tangles
from the following four classes:

emptiness: For any vertex g of G,

∅g = ? : k→ Pg

rainbow: For any edge e of G and loop λ in G with basepoint at the end of e (i.e.
such that eλē is a loop),

Re,λ = ??

λ1 λ2 · · · λle

: Pλ → Peλē
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tensor product: For any two loops λ and µ in G with the same basepoint (i.e.
such that λµ is a loop),

⊗λ,µ = ? ? ?

λ1 λ2 · · · λl µ1 µ2 · · · µm

: Pλ ⊗ Pµ → Pλµ

cap: For any edge e of G and loop λ in G with basepoint the start of e (i.e. such
that eēλ is a loop),

Ce,λ = ? ?

λ1 λ2 · · · λle

: Peēλ → Pλ

Proof Rotation tangles can be built out of rainbows and caps. Conjugating the
given cap tangle by a rotation allows a cap at an arbitrary pair of boundary points.
Conjugating the rainbow tangle by a rotation allows inserting a cup between any
pair of boundary points. Caps and cups together generate the category of annular
planar tangles. Applying caps at the boundary of the tensor product tangle produces
arbitrary quadratic compositions, and compositions of these and annular planar
tangles produce all planar tangles.

Lemma 4.6 The map E intertwines the emptiness tangle.

Proof For any vertex g ∈ G

∅(E(1 ∈ k))(g) = ∅(1 ∈ k)(g)
= 1G(g)
= 1

while

E(∅(1))(g) = E(∅ ∈ P∅)(g)

=
g

g

= 1

and so ∅ ◦ E = E ◦ ∅ on k = P∅ .

Lemma 4.7 The map E intertwines the rainbow tangles.
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Proof Consider S ∈ Pχ and γ a loop in Γ with edges ai descending to the loop χ
in G, and e an edge in Γ from a vertex η to γ0 which descends to the edge ε in G.
We have

R(E(S))(eγē) = d(η)−1E(S)(γ)

= d(η)−1d(γ0)−1 S ?

a0

?

χ0

a1

?

χ1

a2

?

χ2

an

?

χn

γ1 γ2

γ0

while

E(R(S))(eγē) = d(η)−1 S ?

a0

?

χ0

a1

?

χ1

a2

?

χ2

an

?

χn

γ1 γ2
e ēγ0 γ0

ε

η

TODO: and ... bubble bursting!

Both E(R(S))(g) and R(E(S))(g) are zero for any other g not of the form eγē, so
we conclude that E ◦R = R ◦ E on Pχ .

Lemma 4.8 The map E intertwines the tensor tangles.

Proof Take S ∈ Pλ , T ∈ Pµ and α a loop with edges ai descending to λ and
β a loop with edges bi descending to µ, and suppose α0 = β0 . We calculate [put
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coefficients in!]

E(S ⊗ T )(αβ) =

d(α0)−1 S ?

a0

?

λ0

a1

?

λ1

a2

?

λ2

aA

?

λA

T ?

b0

?

µ0

b1

?

µ1

b2

?

µ2

bB

?

µB

= d(α0)−2 S ?

a0

?

λ0

a1

?

λ1

a2

?

λ2

aA

?

λA

×

×
T ?

b0

?

µ0

b1

?

µ1

b2

?

µ2

bB

?

µB

= E(S)(α)E(T )(β)
= ⊗(E(S), E(T ))(α ◦ β)

TODO: Explain the use of Schur’s lemma here!

Lemma 4.9 The map E intertwines the cap tangles.
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Proof Consider S ∈ Peēλ and γ a cycle in Γ descending to λ, and check that

E(C(S))(γ) =
S ?

α0

?

γ0

α1

?

γ1

α2

?

γ2

αg

?

γg
e

=
∑
ε7→e

S ?

α0

?

γ0

α1

?

γ1

α2

?

γ2

αg

?

γg

ε ε̄

e ē

=
∑
ε7→e

??E(S)(εε̄γ)

= C(E(S))(γ)

TODO:

• show the calculation for each case, respectively trivial, schur’s lemma, schur’s
lemma, I=H for two parallel strands

Theorem 4.10 The graph planar algebra embedding map is injective.

Proof By the hypothesis of nondegeneracy, P has no non-trivial planar ideals. (See
for example [2, Proposition 3.5].) Since E takes the empty diagram to something
manifestly non-zero (the constant 1 function on length 0 cycles), the kernel must be
trivial.

TODO: Optional section:

5 Turaev-Viro state sums

Given a unitary pivotal category, we can construct a TQFT invariant of k -manifolds,
for k = 0, 1, 2, 3 via the usual construction. The original Turaev-Viro construction of
this invariant is via a state sum formula, and a suitable generalization of this formula
reproduces the result above (at least in the case that our category C is unitary).

Given a unitary pivotal 2-category C , we can associate a vector space A(Σ) to each
closed 2-manifold Σ and a number A(M) to each closed 3-manifold M . Moreover,
there are relative versions of these invariants. A 3-manifold M with boundary Σ
gives a vector in A(Σ). A 2-manifold Σ with boundary ...
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