text/a_inf_blob.tex
author scott@6e1638ff-ae45-0410-89bd-df963105f760
Fri, 30 Oct 2009 04:05:33 +0000
changeset 147 db91d0a8ed75
parent 146 08bbcf3ec4d2
child 186 748cd16881bf
permissions -rw-r--r--
...
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
113
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     1
%!TEX root = ../blob1.tex
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     2
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     3
\section{The blob complex for $A_\infty$ $n$-categories}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     4
\label{sec:ainfblob}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     5
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     6
Given an $A_\infty$ $n$-category $\cC$ and an $n$-manifold $M$, we define the blob
146
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 141
diff changeset
     7
complex $\bc_*(M)$ to the be the homotopy colimit $\cC(M)$ of Section \ref{sec:ncats}.
113
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     8
\nn{say something about this being anticlimatically tautological?}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     9
We will show below 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    10
\nn{give ref}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    11
that this agrees (up to homotopy) with our original definition of the blob complex
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    12
in the case of plain $n$-categories.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    13
When we need to distinguish between the new and old definitions, we will refer to the 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    14
new-fangled and old-fashioned blob complex.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    15
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    16
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    17
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    18
Let $M^n = Y^k\times F^{n-k}$.  
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    19
Let $C$ be a plain $n$-category.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    20
Let $\cF$ be the $A_\infty$ $k$-category which assigns to a $k$-ball
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    21
$X$ the old-fashioned blob complex $\bc_*(X\times F)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    22
123
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 122
diff changeset
    23
\begin{thm} \label{product_thm}
113
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    24
The old-fashioned blob complex $\bc_*^C(Y\times F)$ is homotopy equivalent to the
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    25
new-fangled blob complex $\bc_*^\cF(Y)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    26
\end{thm}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    27
134
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 133
diff changeset
    28
\input{text/smallblobs}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 133
diff changeset
    29
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 133
diff changeset
    30
\begin{proof}[Proof of Theorem \ref{product_thm}]
113
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    31
We will use the concrete description of the colimit from Subsection \ref{ss:ncat_fields}.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    32
123
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 122
diff changeset
    33
First we define a map 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 122
diff changeset
    34
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 122
diff changeset
    35
	\psi: \bc_*^\cF(Y) \to \bc_*^C(Y\times F) .
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 122
diff changeset
    36
\]
113
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    37
In filtration degree 0 we just glue together the various blob diagrams on $X\times F$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    38
(where $X$ is a component of a permissible decomposition of $Y$) to get a blob diagram on
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    39
$Y\times F$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    40
In filtration degrees 1 and higher we define the map to be zero.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    41
It is easy to check that this is a chain map.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    42
123
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 122
diff changeset
    43
Next we define a map 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 122
diff changeset
    44
\[
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 122
diff changeset
    45
	\phi: \bc_*^C(Y\times F) \to \bc_*^\cF(Y) .
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 122
diff changeset
    46
\]
113
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    47
Actually, we will define it on the homotopy equivalent subcomplex
115
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 113
diff changeset
    48
$\cS_* \sub \bc_*^C(Y\times F)$ generated by blob diagrams which are small with 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 113
diff changeset
    49
respect to some open cover
113
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    50
of $Y\times F$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    51
\nn{need reference to small blob lemma}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    52
We will have to show eventually that this is independent (up to homotopy) of the choice of cover.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    53
Also, for a fixed choice of cover we will only be able to define the map for blob degree less than
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    54
some bound, but this bound goes to infinity as the cover become finer.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    55
115
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 113
diff changeset
    56
Given a decomposition $K$ of $Y$ into $k$-balls $X_i$, let $K\times F$ denote the corresponding
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 113
diff changeset
    57
decomposition of $Y\times F$ into the pieces $X_i\times F$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 113
diff changeset
    58
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 113
diff changeset
    59
%We will define $\phi$ inductively, starting at blob degree 0.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 113
diff changeset
    60
%Given a 0-blob diagram $x$ on $Y\times F$, we can choose a decomposition $K$ of $Y$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 113
diff changeset
    61
%such that $x$ is splittable with respect to $K\times F$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 113
diff changeset
    62
%This defines a filtration degree 0 element of $\bc_*^\cF(Y)$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 113
diff changeset
    63
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 113
diff changeset
    64
We will define $\phi$ using a variant of the method of acyclic models.
122
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 119
diff changeset
    65
Let $a\in \cS_m$ be a blob diagram on $Y\times F$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 119
diff changeset
    66
For $m$ sufficiently small there exists a decomposition $K$ of $Y$ into $k$-balls such that the
123
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 122
diff changeset
    67
codimension 1 cells of $K\times F$ miss the blobs of $a$, and more generally such that $a$ is splittable along (the codimension-1 part of) $K\times F$.
115
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 113
diff changeset
    68
Let $D(a)$ denote the subcomplex of $\bc_*^\cF(Y)$ generated by all $(a, \bar{K})$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 113
diff changeset
    69
such that each $K_i$ has the aforementioned splittable property
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 113
diff changeset
    70
(see Subsection \ref{ss:ncat_fields}).
116
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 115
diff changeset
    71
\nn{need to define $D(a)$ more clearly; also includes $(b_j, \bar{K})$ where
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 115
diff changeset
    72
$\bd(a) = \sum b_j$.}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 115
diff changeset
    73
(By $(a, \bar{K})$ we really mean $(a^\sharp, \bar{K})$, where $a^\sharp$ is 
115
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 113
diff changeset
    74
$a$ split according to $K_0\times F$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 113
diff changeset
    75
To simplify notation we will just write plain $a$ instead of $a^\sharp$.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 113
diff changeset
    76
Roughly speaking, $D(a)$ consists of filtration degree 0 stuff which glues up to give
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 113
diff changeset
    77
$a$, filtration degree 1 stuff which makes all of the filtration degree 0 stuff homologous, 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 113
diff changeset
    78
filtration degree 2 stuff which kills the homology created by the 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 113
diff changeset
    79
filtration degree 1 stuff, and so on.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 113
diff changeset
    80
More formally,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 113
diff changeset
    81
 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 113
diff changeset
    82
\begin{lemma}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 113
diff changeset
    83
$D(a)$ is acyclic.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 113
diff changeset
    84
\end{lemma}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 113
diff changeset
    85
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 113
diff changeset
    86
\begin{proof}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 113
diff changeset
    87
We will prove acyclicity in the first couple of degrees, and \nn{in this draft, at least}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 113
diff changeset
    88
leave the general case to the reader.
116
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 115
diff changeset
    89
115
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 113
diff changeset
    90
Let $K$ and $K'$ be two decompositions of $Y$ compatible with $a$.
116
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 115
diff changeset
    91
We want to show that $(a, K)$ and $(a, K')$ are homologous via filtration degree 1 stuff.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 115
diff changeset
    92
\nn{need to say this better; these two chains don't have the same boundary.}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 115
diff changeset
    93
We might hope that $K$ and $K'$ have a common refinement, but this is not necessarily
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 115
diff changeset
    94
the case.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 115
diff changeset
    95
(Consider the $x$-axis and the graph of $y = x^2\sin(1/x)$ in $\r^2$.)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 115
diff changeset
    96
However, we {\it can} find another decomposition $L$ such that $L$ shares common
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 115
diff changeset
    97
refinements with both $K$ and $K'$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 115
diff changeset
    98
Let $KL$ and $K'L$ denote these two refinements.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 115
diff changeset
    99
Then filtration degree 1 chains associated to the four anti-refinemnts
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 115
diff changeset
   100
$KL\to K$, $KL\to L$, $K'L\to L$ and $K'L\to K'$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 115
diff changeset
   101
give the desired chain connecting $(a, K)$ and $(a, K')$
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   102
(see Figure \ref{zzz4}).
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   103
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   104
\begin{figure}[!ht]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   105
\begin{equation*}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   106
\mathfig{.63}{tempkw/zz4}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   107
\end{equation*}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   108
\caption{Connecting $K$ and $K'$ via $L$}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   109
\label{zzz4}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   110
\end{figure}
116
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 115
diff changeset
   111
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 115
diff changeset
   112
Consider a different choice of decomposition $L'$ in place of $L$ above.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 115
diff changeset
   113
This leads to a cycle consisting of filtration degree 1 stuff.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 115
diff changeset
   114
We want to show that this cycle bounds a chain of filtration degree 2 stuff.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 115
diff changeset
   115
Choose a decomposition $M$ which has common refinements with each of 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 115
diff changeset
   116
$K$, $KL$, $L$, $K'L$, $K'$, $K'L'$, $L'$ and $KL'$.
117
b62214646c4f preparing for semi-public version soon
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 116
diff changeset
   117
\nn{need to also require that $KLM$ antirefines to $KM$, etc.}
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   118
Then we have a filtration degree 2 chain, as shown in Figure \ref{zzz5}, which does the trick.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   119
(Each small triangle in Figure \ref{zzz5} can be filled with a filtration degree 2 chain.)
116
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 115
diff changeset
   120
119
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   121
\begin{figure}[!ht]
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   122
\begin{equation*}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   123
\mathfig{1.0}{tempkw/zz5}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   124
\end{equation*}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   125
\caption{Filling in $K$-$KL$-$L$-$K'L$-$K'$-$K'L'$-$L'$-$KL'$-$K$}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   126
\label{zzz5}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 117
diff changeset
   127
\end{figure}
116
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 115
diff changeset
   128
123
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 122
diff changeset
   129
Continuing in this way we see that $D(a)$ is acyclic.
115
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 113
diff changeset
   130
\end{proof}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 113
diff changeset
   131
123
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 122
diff changeset
   132
We are now in a position to apply the method of acyclic models to get a map
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 122
diff changeset
   133
$\phi:\cS_* \to \bc_*^\cF(Y)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 122
diff changeset
   134
This map is defined in sufficiently low degrees, sends a blob diagram $a$ to $D(a)$, 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 122
diff changeset
   135
and is well-defined up to (iterated) homotopy.
115
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 113
diff changeset
   136
123
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 122
diff changeset
   137
The subcomplex $\cS_* \subset \bc_*^C(Y\times F)$ depends on choice of cover of $Y\times F$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 122
diff changeset
   138
If we refine that cover, we get a complex $\cS'_* \subset \cS_*$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 122
diff changeset
   139
and a map $\phi':\cS'_* \to \bc_*^\cF(Y)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 122
diff changeset
   140
$\phi'$ is defined only on homological degrees below some bound, but this bound is higher than 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 122
diff changeset
   141
the corresponding bound for $\phi$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 122
diff changeset
   142
We must show that $\phi$ and $\phi'$ agree, up to homotopy,
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 122
diff changeset
   143
on the intersection of the subcomplexes on which they are defined.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 122
diff changeset
   144
This is clear, since the acyclic subcomplexes $D(a)$ above used in the definition of 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 122
diff changeset
   145
$\phi$ and $\phi'$ do not depend on the choice of cover.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 122
diff changeset
   146
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 122
diff changeset
   147
\nn{need to say (and justify) that we now have a map $\phi$ indep of choice of cover}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 122
diff changeset
   148
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 122
diff changeset
   149
We now show that $\phi\circ\psi$ and $\psi\circ\phi$ are homotopic to the identity.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 122
diff changeset
   150
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 122
diff changeset
   151
$\psi\circ\phi$ is the identity.  $\phi$ takes a blob diagram $a$ and chops it into pieces 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 122
diff changeset
   152
according to some decomposition $K$ of $Y$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 122
diff changeset
   153
$\psi$ glues those pieces back together, yielding the same $a$ we started with.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 122
diff changeset
   154
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 122
diff changeset
   155
$\phi\circ\psi$ is the identity up to homotopy by another MoAM argument...
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 122
diff changeset
   156
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 122
diff changeset
   157
This concludes the proof of Theorem \ref{product_thm}.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 122
diff changeset
   158
\nn{at least I think it does; it's pretty rough at this point.}
113
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   159
\end{proof}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   160
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   161
\nn{need to say something about dim $< n$ above}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   162
123
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 122
diff changeset
   163
\medskip
113
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   164
123
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 122
diff changeset
   165
\begin{cor}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 122
diff changeset
   166
The new-fangled and old-fashioned blob complexes are homotopic.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 122
diff changeset
   167
\end{cor}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 122
diff changeset
   168
\begin{proof}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 122
diff changeset
   169
Apply Theorem \ref{product_thm} with the fiber $F$ equal to a point.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 122
diff changeset
   170
\end{proof}
113
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   171
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   172
\medskip
133
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 123
diff changeset
   173
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 123
diff changeset
   174
Next we prove a gluing theorem.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 123
diff changeset
   175
Let $X$ be a closed $k$-manifold with a splitting $X = X'_1\cup_Y X'_2$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 123
diff changeset
   176
We will need an explicit collar on $Y$, so rewrite this as
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 123
diff changeset
   177
$X = X_1\cup (Y\times J) \cup X_2$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 123
diff changeset
   178
\nn{need figure}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 123
diff changeset
   179
Given this data we have: \nn{need refs to above for these}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 123
diff changeset
   180
\begin{itemize}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 123
diff changeset
   181
\item An $A_\infty$ $n{-}k$-category $\bc(X)$, which assigns to an $m$-ball
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 123
diff changeset
   182
$D$ fields on $D\times X$ (for $m+k < n$) or the blob complex $\bc_*(D\times X; c)$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 123
diff changeset
   183
(for $m+k = n$). \nn{need to explain $c$}.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 123
diff changeset
   184
\item An $A_\infty$ $n{-}k{+}1$-category $\bc(Y)$, defined similarly.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 123
diff changeset
   185
\item Two $\bc(Y)$ modules $\bc(X_1)$ and $\bc(X_2)$, which assign to a marked
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 123
diff changeset
   186
$m$-ball $(D, H)$ either fields on $(D\times Y) \cup (H\times X_i)$ (if $m+k < n$)
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 123
diff changeset
   187
or the blob complex $\bc_*((D\times Y) \cup (H\times X_i))$ (if $m+k = n$).
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 123
diff changeset
   188
\end{itemize}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 123
diff changeset
   189
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 123
diff changeset
   190
\begin{thm}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 123
diff changeset
   191
$\bc(X) \cong \bc(X_1) \otimes_{\bc(Y), J} \bc(X_2)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 123
diff changeset
   192
\end{thm}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 123
diff changeset
   193
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 123
diff changeset
   194
\begin{proof}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 123
diff changeset
   195
The proof is similar to that of Theorem \ref{product_thm}.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 123
diff changeset
   196
\nn{need to say something about dimensions less than $n$, 
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 123
diff changeset
   197
but for now concentrate on top dimension.}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 123
diff changeset
   198
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 123
diff changeset
   199
Let $\cT$ denote the $n{-}k$-category $\bc(X_1) \otimes_{\bc(Y), J} \bc(X_2)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 123
diff changeset
   200
Let $D$ be an $n{-}k$-ball.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 123
diff changeset
   201
There is an obvious map from $\cT(D)$ to $\bc_*(D\times X)$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 123
diff changeset
   202
To get a map in the other direction, we replace $\bc_*(D\times X)$ with a subcomplex
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 123
diff changeset
   203
$\cS_*$ which is adapted to a fine open cover of $D\times X$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 123
diff changeset
   204
For sufficiently small $j$ (depending on the cover), we can find, for each $j$-blob diagram $b$
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 123
diff changeset
   205
on $D\times X$, a decomposition of $J$ such that $b$ splits on the corresponding
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 123
diff changeset
   206
decomposition of $D\times X$.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 123
diff changeset
   207
The proof that these two maps are inverse to each other is the same as in
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 123
diff changeset
   208
Theorem \ref{product_thm}.
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 123
diff changeset
   209
\end{proof}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 123
diff changeset
   210
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 123
diff changeset
   211
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 123
diff changeset
   212
\medskip
113
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   213
\hrule
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   214
\medskip
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   215
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   216
\nn{to be continued...}
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   217
\medskip
133
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents: 123
diff changeset
   218
\nn{still to do: fiber bundles, general maps}
113
kevin@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
   219
134
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 133
diff changeset
   220
\todo{}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 133
diff changeset
   221
Various citations we might want to make:
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 133
diff changeset
   222
\begin{itemize}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 133
diff changeset
   223
\item \cite{MR2061854} McClure and Smith's review article
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 133
diff changeset
   224
\item \cite{MR0420610} May, (inter alia, definition of $E_\infty$ operad)
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 133
diff changeset
   225
\item \cite{MR0236922,MR0420609} Boardman and Vogt
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 133
diff changeset
   226
\item \cite{MR1256989} definition of framed little-discs operad
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 133
diff changeset
   227
\end{itemize}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 133
diff changeset
   228
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 133
diff changeset
   229
We now turn to establishing the gluing formula for blob homology, restated from Property \ref{property:gluing} in the Introduction
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 133
diff changeset
   230
\begin{itemize}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 133
diff changeset
   231
%\mbox{}% <-- gets the indenting right
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 133
diff changeset
   232
\item For any $(n-1)$-manifold $Y$, the blob homology of $Y \times I$ is
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 133
diff changeset
   233
naturally an $A_\infty$ category. % We'll write $\bc_*(Y)$ for $\bc_*(Y \times I)$ below.
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 133
diff changeset
   234
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 133
diff changeset
   235
\item For any $n$-manifold $X$, with $Y$ a codimension $0$-submanifold of its boundary, the blob homology of $X$ is naturally an
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 133
diff changeset
   236
$A_\infty$ module for $\bc_*(Y \times I)$.
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 133
diff changeset
   237
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 133
diff changeset
   238
\item For any $n$-manifold $X$, with $Y \cup Y^{\text{op}}$ a codimension
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 133
diff changeset
   239
$0$-submanifold of its boundary, the blob homology of $X'$, obtained from
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 133
diff changeset
   240
$X$ by gluing along $Y$, is the $A_\infty$ self-tensor product of
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 133
diff changeset
   241
$\bc_*(X)$ as an $\bc_*(Y \times I)$-bimodule.
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 133
diff changeset
   242
\begin{equation*}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 133
diff changeset
   243
\bc_*(X') \iso \bc_*(X) \Tensor^{A_\infty}_{\mathclap{\bc_*(Y \times I)}} \!\!\!\!\!\!\xymatrix{ \ar@(ru,rd)@<-1ex>[]}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 133
diff changeset
   244
\end{equation*}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 133
diff changeset
   245
\end{itemize}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 133
diff changeset
   246