pnas/pnas.tex
author Kevin Walker <kevin@canyon23.net>
Thu, 11 Nov 2010 20:45:33 -0800
changeset 600 e9032f8dee24
parent 599 ae1ee41f20dd
child 601 6bfa35fb758a
permissions -rw-r--r--
Examples and misc.; quality of writing perhaps not so great.
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
566
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
     1
%% PNAStmpl.tex
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
     2
%% Template file to use for PNAS articles prepared in LaTeX
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
     3
%% Version: Apr 14, 2008
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
     4
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
     5
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
     6
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
     7
%% BASIC CLASS FILE 
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
     8
%% PNAStwo for two column articles is called by default.
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
     9
%% Uncomment PNASone for single column articles. One column class
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    10
%% and style files are available upon request from pnas@nas.edu.
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    11
%% (uncomment means get rid of the '%' in front of the command)
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    12
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    13
%\documentclass{pnasone}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    14
\documentclass{pnastwo}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    15
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    16
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    17
%% Changing position of text on physical page:
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    18
%% Since not all printers position
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    19
%% the printed page in the same place on the physical page,
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    20
%% you can change the position yourself here, if you need to:
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    21
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    22
% \advance\voffset -.5in % Minus dimension will raise the printed page on the 
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    23
                         %  physical page; positive dimension will lower it.
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    24
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    25
%% You may set the dimension to the size that you need.
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    26
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    27
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    28
%% OPTIONAL GRAPHICS STYLE FILE
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    29
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    30
%% Requires graphics style file (graphicx.sty), used for inserting
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    31
%% .eps files into LaTeX articles.
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    32
%% Note that inclusion of .eps files is for your reference only;
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    33
%% when submitting to PNAS please submit figures separately.
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    34
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    35
%% Type into the square brackets the name of the driver program 
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    36
%% that you are using. If you don't know, try dvips, which is the
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    37
%% most common PC driver, or textures for the Mac. These are the options:
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    38
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    39
% [dvips], [xdvi], [dvipdf], [dvipdfm], [dvipdfmx], [pdftex], [dvipsone],
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    40
% [dviwindo], [emtex], [dviwin], [pctexps], [pctexwin], [pctexhp], [pctex32],
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    41
% [truetex], [tcidvi], [vtex], [oztex], [textures], [xetex]
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    42
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    43
%\usepackage[dvips]{graphicx}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    44
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    45
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    46
%% OPTIONAL POSTSCRIPT FONT FILES
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    47
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    48
%% PostScript font files: You may need to edit the PNASoneF.sty
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    49
%% or PNAStwoF.sty file to make the font names match those on your system. 
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    50
%% Alternatively, you can leave the font style file commands commented out
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    51
%% and typeset your article using the default Computer Modern 
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    52
%% fonts (recommended). If accepted, your article will be typeset
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    53
%% at PNAS using PostScript fonts.
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    54
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    55
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    56
% Choose PNASoneF for one column; PNAStwoF for two column:
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    57
%\usepackage{PNASoneF}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    58
%\usepackage{PNAStwoF}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    59
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    60
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    61
%% ADDITIONAL OPTIONAL STYLE FILES
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    62
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    63
%% The AMS math files are commonly used to gain access to useful features
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    64
%% like extended math fonts and math commands.
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    65
571
f958e0ea62f8 compilable PNAS file\! The blob intro typesets (poorly) onto 3 2-column pages
Scott Morrison <scott@tqft.net>
parents: 566
diff changeset
    66
\usepackage{amssymb,amsfonts,amsmath,amsthm}
566
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    67
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    68
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    69
%% OPTIONAL MACRO FILES
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    70
%% Insert self-defined macros here.
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    71
%% \newcommand definitions are recommended; \def definitions are supported
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    72
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    73
%\newcommand{\mfrac}[2]{\frac{\displaystyle #1}{\displaystyle #2}}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    74
%\def\s{\sigma}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    75
571
f958e0ea62f8 compilable PNAS file\! The blob intro typesets (poorly) onto 3 2-column pages
Scott Morrison <scott@tqft.net>
parents: 566
diff changeset
    76
\input{preamble}
f958e0ea62f8 compilable PNAS file\! The blob intro typesets (poorly) onto 3 2-column pages
Scott Morrison <scott@tqft.net>
parents: 566
diff changeset
    77
\input{../text/kw_macros}
566
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    78
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    79
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    80
%% Don't type in anything in the following section:
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    81
%%%%%%%%%%%%
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    82
%% For PNAS Only:
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    83
\contributor{Submitted to Proceedings
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    84
of the National Academy of Sciences of the United States of America}
571
f958e0ea62f8 compilable PNAS file\! The blob intro typesets (poorly) onto 3 2-column pages
Scott Morrison <scott@tqft.net>
parents: 566
diff changeset
    85
%\url{www.pnas.org/cgi/doi/10.1073/pnas.0709640104}
566
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    86
\copyrightyear{2008}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    87
\issuedate{Issue Date}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    88
\volume{Volume}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    89
\issuenumber{Issue Number}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    90
%%%%%%%%%%%%
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    91
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    92
\begin{document}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    93
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    94
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    95
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    96
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    97
%% For titles, only capitalize the first letter
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    98
%% \title{Almost sharp fronts for the surface quasi-geostrophic equation}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    99
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   100
\title{The blob complex}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   101
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   102
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   103
%% Enter authors via the \author command.  
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   104
%% Use \affil to define affiliations.
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   105
%% (Leave no spaces between author name and \affil command)
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   106
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   107
%% Note that the \thanks{} command has been disabled in favor of
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   108
%% a generic, reserved space for PNAS publication footnotes.
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   109
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   110
%% \author{<author name>
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   111
%% \affil{<number>}{<Institution>}} One number for each institution.
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   112
%% The same number should be used for authors that
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   113
%% are affiliated with the same institution, after the first time
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   114
%% only the number is needed, ie, \affil{number}{text}, \affil{number}{}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   115
%% Then, before last author ...
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   116
%% \and
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   117
%% \author{<author name>
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   118
%% \affil{<number>}{}}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   119
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   120
%% For example, assuming Garcia and Sonnery are both affiliated with
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   121
%% Universidad de Murcia:
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   122
%% \author{Roberta Graff\affil{1}{University of Cambridge, Cambridge,
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   123
%% United Kingdom},
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   124
%% Javier de Ruiz Garcia\affil{2}{Universidad de Murcia, Bioquimica y Biologia
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   125
%% Molecular, Murcia, Spain}, \and Franklin Sonnery\affil{2}{}}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   126
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   127
\author{Scott Morrison\affil{1}{Miller Institute for Basic Research, UC Berkeley, CA 94704, USA} \and Kevin Walker\affil{2}{Microsoft Station Q, 2243 CNSI Building, UC Santa Barbara, CA 93106, USA}}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   128
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   129
\contributor{Submitted to Proceedings of the National Academy of Sciences
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   130
of the United States of America}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   131
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   132
%% The \maketitle command is necessary to build the title page.
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   133
\maketitle
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   134
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   135
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   136
\begin{article}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   137
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   138
\begin{abstract} -- enter abstract text here -- \end{abstract}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   139
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   140
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   141
%% When adding keywords, separate each term with a straight line: |
578
Scott Morrison <scott@tqft.net>
parents: 577
diff changeset
   142
\keywords{n-categories | topological quantum field theory | hochschild homology}
566
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   143
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   144
%% Optional for entering abbreviations, separate the abbreviation from
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   145
%% its definition with a comma, separate each pair with a semicolon:
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   146
%% for example:
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   147
%% \abbreviations{SAM, self-assembled monolayer; OTS,
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   148
%% octadecyltrichlorosilane}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   149
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   150
% \abbreviations{}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   151
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   152
%% The first letter of the article should be drop cap: \dropcap{}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   153
%\dropcap{I}n this article we study the evolution of ''almost-sharp'' fronts
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   154
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   155
%% Enter the text of your article beginning here and ending before
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   156
%% \begin{acknowledgements}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   157
%% Section head commands for your reference:
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   158
%% \section{}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   159
%% \subsection{}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   160
%% \subsubsection{}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   161
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   162
\nn{
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   163
background: TQFTs are important, historically, semisimple categories well-understood.
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   164
Many new examples arising recently which do not fit this framework, e.g. SW and OS theory.
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   165
These have more complicated gluing formulas (\cite{1003.0598,1005.1248}, etc); 
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   166
it would be nice to give generalized TQFT axioms that encompass these.
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   167
Triangulated categories are important; often calculations are via exact sequences,
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   168
and the standard TQFT constructions are quotients, which destroy exactness.
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   169
A first attempt to deal with this might be to replace all the tensor products in gluing formulas
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   170
with derived tensor products (cite Kh?).
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   171
However, in this approach it's probably difficult to prove invariance of constructions,
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   172
because they depend on explicit presentations of the manifold.
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   173
We'll give a manifestly invariant construction,
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   174
and deduce gluing formulas based on derived (actually, $A_\infty$) tensor products.}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   175
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   176
\section{Definitions}
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   177
\subsection{$n$-categories} \mbox{}
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   178
581
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   179
\nn{rough draft of n-cat stuff...}
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   180
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   181
\nn{maybe say something about goals: well-suited to TQFTs; avoid proliferation of coherency axioms;
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   182
non-recursive (n-cats not defined n terms of (n-1)-cats; easy to show that the motivating
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   183
examples satisfy the axioms; strong duality; both plain and infty case;
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   184
(?) easy to see that axioms are correct, in the sense of nothing missing (need
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   185
to say this better if we keep it)}
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   186
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   187
\nn{maybe: the typical n-cat definition tries to do two things at once: (1) give a list of basic properties
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   188
which are weak enough to include the basic examples and strong enough to support the proofs
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   189
of the main theorems; and (2) specify a minimal set of generators and/or axioms.
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   190
We separate these two tasks, and address only the first, which becomes much easier when not burdened by the second.
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   191
More specifically, life is easier when working with maximal, rather than minimal, collections of axioms.}
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   192
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   193
\nn{say something about defining plain and infty cases simultaneously}
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   194
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   195
There are five basic ingredients of an $n$-category definition:
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   196
$k$-morphisms (for $0\le k \le n$), domain and range, composition,
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   197
identity morphisms, and special behavior in dimension $n$ (e.g. enrichment
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   198
in some auxiliary category, or strict associativity instead of weak associativity).
584
Scott Morrison <scott@tqft.net>
parents: 583
diff changeset
   199
We will treat each of these in turn.
581
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   200
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   201
To motivate our morphism axiom, consider the venerable notion of the Moore loop space
599
ae1ee41f20dd various
Scott Morrison <scott@tqft.net>
parents: 598
diff changeset
   202
\cite[\S 2.2]{MR505692}.
581
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   203
In the standard definition of a loop space, loops are always parameterized by the unit interval $I = [0,1]$,
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   204
so composition of loops requires a reparameterization $I\cup I \cong I$, and this leads to a proliferation
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   205
of higher associativity relations.
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   206
While this proliferation is manageable for 1-categories (and indeed leads to an elegant theory
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   207
of Stasheff polyhedra and $A_\infty$ categories), it becomes undesirably complex for higher categories.
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   208
In a Moore loop space, we have a separate space $\Omega_r$ for each interval $[0,r]$, and a 
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   209
{\it strictly associative} composition $\Omega_r\times \Omega_s\to \Omega_{r+s}$.
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   210
Thus we can have the simplicity of strict associativity in exchange for more morphisms.
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   211
We wish to imitate this strategy in higher categories.
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   212
Because we are mainly interested in the case of strong duality, we replace the intervals $[0,r]$ not with
582
Kevin Walker <kevin@canyon23.net>
parents: 581
diff changeset
   213
a product of $k$ intervals \nn{cf xxxx} but rather with any $k$-ball, that is, any $k$-manifold which is homeomorphic
Kevin Walker <kevin@canyon23.net>
parents: 581
diff changeset
   214
to the standard $k$-ball $B^k$.
583
Kevin Walker <kevin@canyon23.net>
parents: 582
diff changeset
   215
\nn{maybe add that in addition we want functoriality}
Kevin Walker <kevin@canyon23.net>
parents: 582
diff changeset
   216
600
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   217
We haven't said precisely what sort of balls we are considering,
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   218
because we prefer to let this detail be a parameter in the definition.
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   219
It is useful to consider unoriented, oriented, Spin and $\mbox{Pin}_\pm$ balls.
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   220
Also useful are more exotic structures, such as balls equipped with a map to some target space,
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   221
or equipped with $m$ independent vector fields.
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   222
(The latter structure would model $n$-categories with less duality than we usually assume.)
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   223
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   224
%In fact, the axioms here may easily be varied by considering balls with structure (e.g. $m$ independent vector fields, a map to some target space, etc.). Such variations are useful for axiomatizing categories with less duality, and also as technical tools in proofs.
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   225
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   226
\begin{axiom}[Morphisms]
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   227
\label{axiom:morphisms}
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   228
For each $0 \le k \le n$, we have a functor $\cC_k$ from 
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   229
the category of $k$-balls and 
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   230
homeomorphisms to the category of sets and bijections.
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   231
\end{axiom}
582
Kevin Walker <kevin@canyon23.net>
parents: 581
diff changeset
   232
586
0510346848ed restore and complete the fragment
Kevin Walker <kevin@canyon23.net>
parents: 585
diff changeset
   233
Note that the functoriality in the above axiom allows us to operate via
0510346848ed restore and complete the fragment
Kevin Walker <kevin@canyon23.net>
parents: 585
diff changeset
   234
homeomorphisms which are not the identity on the boundary of the $k$-ball.
0510346848ed restore and complete the fragment
Kevin Walker <kevin@canyon23.net>
parents: 585
diff changeset
   235
The action of these homeomorphisms gives the ``strong duality" structure.
595
9c708975b61b making pinched products axioms terser, and writing a short proof of the higher deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 594
diff changeset
   236
As such, we don't subdivide the boundary of a morphism
9c708975b61b making pinched products axioms terser, and writing a short proof of the higher deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 594
diff changeset
   237
into domain and range --- the duality operations can convert between domain and range.
582
Kevin Walker <kevin@canyon23.net>
parents: 581
diff changeset
   238
585
e2996d7b4e6c various, mostly working on axioms
Scott Morrison <scott@tqft.net>
parents: 584
diff changeset
   239
Later \todo{} we inductively define an extension of the functors $\cC_k$ to functors $\cl{\cC}_k$ from arbitrary manifolds to sets. We need the restriction of these functors to $k$-spheres, for $k<n$, for the next axiom.
582
Kevin Walker <kevin@canyon23.net>
parents: 581
diff changeset
   240
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   241
\begin{axiom}[Boundaries]\label{nca-boundary}
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   242
For each $k$-ball $X$, we have a map of sets $\bd: \cC_k(X)\to \cl{\cC}_{k-1}(\bd X)$.
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   243
These maps, for various $X$, comprise a natural transformation of functors.
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   244
\end{axiom}
582
Kevin Walker <kevin@canyon23.net>
parents: 581
diff changeset
   245
594
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
   246
For $c\in \cl{\cC}_{k-1}(\bd X)$ we define $\cC_k(X; c) = \bd^{-1}(c)$.
587
38ec3d05d0d8 enrichment; decompositions (meta)
Kevin Walker <kevin@canyon23.net>
parents: 586
diff changeset
   247
38ec3d05d0d8 enrichment; decompositions (meta)
Kevin Walker <kevin@canyon23.net>
parents: 586
diff changeset
   248
Many of the examples we are interested in are enriched in some auxiliary category $\cS$
597
26c4d576e155 fixing typo
Kevin Walker <kevin@canyon23.net>
parents: 595
diff changeset
   249
(e.g. vector spaces or rings, or, in the $A_\infty$ case, chain complexes or topological spaces).
595
9c708975b61b making pinched products axioms terser, and writing a short proof of the higher deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 594
diff changeset
   250
This means that in the top dimension $k=n$ the sets $\cC_n(X; c)$ have the structure
587
38ec3d05d0d8 enrichment; decompositions (meta)
Kevin Walker <kevin@canyon23.net>
parents: 586
diff changeset
   251
of an object of $\cS$, and all of the structure maps of the category (above and below) are
38ec3d05d0d8 enrichment; decompositions (meta)
Kevin Walker <kevin@canyon23.net>
parents: 586
diff changeset
   252
compatible with the $\cS$ structure on $\cC_n(X; c)$.
38ec3d05d0d8 enrichment; decompositions (meta)
Kevin Walker <kevin@canyon23.net>
parents: 586
diff changeset
   253
38ec3d05d0d8 enrichment; decompositions (meta)
Kevin Walker <kevin@canyon23.net>
parents: 586
diff changeset
   254
585
e2996d7b4e6c various, mostly working on axioms
Scott Morrison <scott@tqft.net>
parents: 584
diff changeset
   255
Given two hemispheres (a `domain' and `range') that agree on the equator, we need to be able to assemble them into a boundary value of the entire sphere.
e2996d7b4e6c various, mostly working on axioms
Scott Morrison <scott@tqft.net>
parents: 584
diff changeset
   256
e2996d7b4e6c various, mostly working on axioms
Scott Morrison <scott@tqft.net>
parents: 584
diff changeset
   257
\begin{lem}
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   258
\label{lem:domain-and-range}
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   259
Let $S = B_1 \cup_E B_2$, where $S$ is a $k{-}1$-sphere $(1\le k\le n)$,
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   260
$B_i$ is a $k{-}1$-ball, and $E = B_1\cap B_2$ is a $k{-}2$-sphere (Figure \ref{blah3}).
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   261
Let $\cC(B_1) \times_{\cl{\cC}(E)} \cC(B_2)$ denote the fibered product of the 
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   262
two maps $\bd: \cC(B_i)\to \cl{\cC}(E)$.
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   263
Then we have an injective map
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   264
\[
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   265
	\gl_E : \cC(B_1) \times_{\cl{\cC}(E)} \cC(B_2) \into \cl{\cC}(S)
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   266
\]
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   267
which is natural with respect to the actions of homeomorphisms.
585
e2996d7b4e6c various, mostly working on axioms
Scott Morrison <scott@tqft.net>
parents: 584
diff changeset
   268
%(When $k=1$ we stipulate that $\cl{\cC}(E)$ is a point, so that the above fibered product
e2996d7b4e6c various, mostly working on axioms
Scott Morrison <scott@tqft.net>
parents: 584
diff changeset
   269
%becomes a normal product.)
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   270
\end{lem}
582
Kevin Walker <kevin@canyon23.net>
parents: 581
diff changeset
   271
585
e2996d7b4e6c various, mostly working on axioms
Scott Morrison <scott@tqft.net>
parents: 584
diff changeset
   272
If $\bdy B = S$, we denote $\bdy^{-1}(\im(\gl_E))$ by $\cC(B)_E$.
e2996d7b4e6c various, mostly working on axioms
Scott Morrison <scott@tqft.net>
parents: 584
diff changeset
   273
e2996d7b4e6c various, mostly working on axioms
Scott Morrison <scott@tqft.net>
parents: 584
diff changeset
   274
\begin{axiom}[Gluing]
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   275
\label{axiom:composition}
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   276
Let $B = B_1 \cup_Y B_2$, where $B$, $B_1$ and $B_2$ are $k$-balls ($0\le k\le n$)
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   277
and $Y = B_1\cap B_2$ is a $k{-}1$-ball (Figure \ref{blah5}).
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   278
Let $E = \bd Y$, which is a $k{-}2$-sphere.
585
e2996d7b4e6c various, mostly working on axioms
Scott Morrison <scott@tqft.net>
parents: 584
diff changeset
   279
%Note that each of $B$, $B_1$ and $B_2$ has its boundary split into two $k{-}1$-balls by $E$.
e2996d7b4e6c various, mostly working on axioms
Scott Morrison <scott@tqft.net>
parents: 584
diff changeset
   280
We have restriction maps $\cC(B_i)_E \to \cC(Y)$.
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   281
Let $\cC(B_1)_E \times_{\cC(Y)} \cC(B_2)_E$ denote the fibered product of these two maps. 
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   282
We have a map
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   283
\[
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   284
	\gl_Y : \cC(B_1)_E \times_{\cC(Y)} \cC(B_2)_E \to \cC(B)_E
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   285
\]
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   286
which is natural with respect to the actions of homeomorphisms, and also compatible with restrictions
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   287
to the intersection of the boundaries of $B$ and $B_i$.
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   288
If $k < n$,
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   289
or if $k=n$ and we are in the $A_\infty$ case, 
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   290
we require that $\gl_Y$ is injective.
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   291
(For $k=n$ in the plain (non-$A_\infty$) case, see below.)
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   292
\end{axiom}
582
Kevin Walker <kevin@canyon23.net>
parents: 581
diff changeset
   293
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   294
\begin{axiom}[Strict associativity] \label{nca-assoc}
585
e2996d7b4e6c various, mostly working on axioms
Scott Morrison <scott@tqft.net>
parents: 584
diff changeset
   295
The gluing maps above are strictly associative.
584
Scott Morrison <scott@tqft.net>
parents: 583
diff changeset
   296
Given any decomposition of a ball $B$ into smaller balls
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   297
$$\bigsqcup B_i \to B,$$ 
584
Scott Morrison <scott@tqft.net>
parents: 583
diff changeset
   298
any sequence of gluings (where all the intermediate steps are also disjoint unions of balls) yields the same result.
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   299
\end{axiom}
585
e2996d7b4e6c various, mostly working on axioms
Scott Morrison <scott@tqft.net>
parents: 584
diff changeset
   300
For the next axiom, a \emph{pinched product} is a map locally modeled on a degeneracy map between simplices.
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   301
\begin{axiom}[Product (identity) morphisms]
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   302
\label{axiom:product}
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   303
For each pinched product $\pi:E\to X$, with $X$ a $k$-ball and $E$ a $k{+}m$-ball ($m\ge 1$),
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   304
there is a map $\pi^*:\cC(X)\to \cC(E)$.
595
9c708975b61b making pinched products axioms terser, and writing a short proof of the higher deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 594
diff changeset
   305
These maps must be
9c708975b61b making pinched products axioms terser, and writing a short proof of the higher deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 594
diff changeset
   306
\begin{enumerate}
9c708975b61b making pinched products axioms terser, and writing a short proof of the higher deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 594
diff changeset
   307
\item natural with respect to maps of pinched products,
9c708975b61b making pinched products axioms terser, and writing a short proof of the higher deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 594
diff changeset
   308
\item functorial with respect to composition of pinched products, 
9c708975b61b making pinched products axioms terser, and writing a short proof of the higher deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 594
diff changeset
   309
\item compatible with gluing and restriction of pinched products.
9c708975b61b making pinched products axioms terser, and writing a short proof of the higher deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 594
diff changeset
   310
\end{enumerate}
9c708975b61b making pinched products axioms terser, and writing a short proof of the higher deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 594
diff changeset
   311
9c708975b61b making pinched products axioms terser, and writing a short proof of the higher deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 594
diff changeset
   312
%%% begin noop %%%
9c708975b61b making pinched products axioms terser, and writing a short proof of the higher deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 594
diff changeset
   313
% this was the original list of conditions, which I've replaced with the much terser list above -S
9c708975b61b making pinched products axioms terser, and writing a short proof of the higher deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 594
diff changeset
   314
\noop{
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   315
These maps must satisfy the following conditions.
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   316
\begin{enumerate}
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   317
\item
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   318
If $\pi:E\to X$ and $\pi':E'\to X'$ are pinched products, and
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   319
if $f:X\to X'$ and $\tilde{f}:E \to E'$ are maps such that the diagram
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   320
\[ \xymatrix{
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   321
	E \ar[r]^{\tilde{f}} \ar[d]_{\pi} & E' \ar[d]^{\pi'} \\
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   322
	X \ar[r]^{f} & X'
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   323
} \]
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   324
commutes, then we have 
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   325
\[
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   326
	\pi'^*\circ f = \tilde{f}\circ \pi^*.
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   327
\]
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   328
\item
585
e2996d7b4e6c various, mostly working on axioms
Scott Morrison <scott@tqft.net>
parents: 584
diff changeset
   329
Product morphisms are compatible with gluing.
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   330
Let $\pi:E\to X$, $\pi_1:E_1\to X_1$, and $\pi_2:E_2\to X_2$ 
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   331
be pinched products with $E = E_1\cup E_2$.
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   332
Let $a\in \cC(X)$, and let $a_i$ denote the restriction of $a$ to $X_i\sub X$.
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   333
Then 
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   334
\[
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   335
	\pi^*(a) = \pi_1^*(a_1)\bullet \pi_2^*(a_2) .
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   336
\]
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   337
\item
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   338
Product morphisms are associative.
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   339
If $\pi:E\to X$ and $\rho:D\to E$ are pinched products then
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   340
\[
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   341
	\rho^*\circ\pi^* = (\pi\circ\rho)^* .
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   342
\]
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   343
\item
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   344
Product morphisms are compatible with restriction.
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   345
If we have a commutative diagram
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   346
\[ \xymatrix{
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   347
	D \ar@{^(->}[r] \ar[d]_{\rho} & E \ar[d]^{\pi} \\
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   348
	Y \ar@{^(->}[r] & X
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   349
} \]
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   350
such that $\rho$ and $\pi$ are pinched products, then
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   351
\[
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   352
	\res_D\circ\pi^* = \rho^*\circ\res_Y .
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   353
\]
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   354
\end{enumerate}
595
9c708975b61b making pinched products axioms terser, and writing a short proof of the higher deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 594
diff changeset
   355
} %%% end \noop %%%
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   356
\end{axiom}
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   357
\begin{axiom}[\textup{\textbf{[plain  version]}} Extended isotopy invariance in dimension $n$.]
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   358
\label{axiom:extended-isotopies}
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   359
Let $X$ be an $n$-ball and $f: X\to X$ be a homeomorphism which restricts
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   360
to the identity on $\bd X$ and isotopic (rel boundary) to the identity.
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   361
Then $f$ acts trivially on $\cC(X)$.
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   362
In addition, collar maps act trivially on $\cC(X)$.
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   363
\end{axiom}
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   364
600
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   365
\nn{need to define collar maps}
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   366
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   367
\smallskip
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   368
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   369
For $A_\infty$ $n$-categories, we replace
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   370
isotopy invariance with the requirement that families of homeomorphisms act.
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   371
For the moment, assume that our $n$-morphisms are enriched over chain complexes.
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   372
Let $\Homeo_\bd(X)$ denote homeomorphisms of $X$ which fix $\bd X$ and
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   373
$C_*(\Homeo_\bd(X))$ denote the singular chains on this space.
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   374
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   375
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   376
\begin{axiom}[\textup{\textbf{[$A_\infty$ version]}} Families of homeomorphisms act in dimension $n$.]
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   377
\label{axiom:families}
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   378
For each $n$-ball $X$ and each $c\in \cl{\cC}(\bd X)$ we have a map of chain complexes
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   379
\[
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   380
	C_*(\Homeo_\bd(X))\ot \cC(X; c) \to \cC(X; c) .
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   381
\]
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   382
These action maps are required to be associative up to homotopy,
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   383
and also compatible with composition (gluing) in the sense that
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   384
a diagram like the one in Theorem \ref{thm:CH} commutes.
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   385
\end{axiom}
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   386
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   387
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   388
\todo{
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   389
Decide if we need a friendlier, skein-module version.
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   390
}
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   391
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   392
\subsubsection{Examples}
600
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   393
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   394
\nn{can't figure out environment stuff; want no italics}
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   395
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   396
\noindent
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   397
Example. [Fundamental $n$-groupoid of a space]
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   398
Let $T$ be a topological space.
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   399
Define $\pi_{\le n}(T)(X)$, for $X$ a $k$-ball and $k<n$,
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   400
to be the set of continuous maps from $X$ to $T$.
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   401
If $X$ is an $n$-ball, define $\pi_{\le n}(T)(X)$ to be homotopy classes (rel boundary) of such maps.
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   402
Define boundary restrictions and gluing in the obvious way.
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   403
If $\rho:E\to X$ is a pinched product and $f:X\to T$ is a $k$-morphism,
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   404
define the product morphism $\rho^*(f)$ to be $f\circ\rho$.
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   405
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   406
We can also define an $A_\infty$ version $\pi_{\le n}^\infty(T)$ of the fundamental $n$-groupoid.
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   407
Most of the definition is the same as above.
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   408
For $X$ an $n$-ball define $\pi_{\le n}^\infty(T)(X)$ to be the space of all maps from $X$ to $T$
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   409
(if we are enriching over spaces) or the singular chains on that space (if we are enriching over chain complexes).
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   410
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   411
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   412
\noindent
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   413
Example. [String diagrams]
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   414
Fix a traditional $n$-category $C$ with strong duality (e.g.\ a pivotal 2-category).
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   415
Let $X$ be a $k$-ball and define $\cS_C(X)$ to be the set of $C$ string diagrams drawn on $X$;
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   416
that is, certain cell complexes embedded in $X$, with the codimension-$j$ cells labeled by $j$-morphisms of $C$.
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   417
If $X$ is an $n$-ball, identify two such string diagrams if they evaluate to the same $n$-morphism of $C$.
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   418
Boundary restrictions and gluing are again straightforward to define.
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   419
Define product morphisms via product cell decompositions.
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   420
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   421
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   422
\nn{also do bordism category?}
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   423
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   424
\subsection{The blob complex}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   425
\subsubsection{Decompositions of manifolds}
573
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   426
583
Kevin Walker <kevin@canyon23.net>
parents: 582
diff changeset
   427
\nn{KW: I'm inclined to suppress all discussion of the subtleties of decompositions.
Kevin Walker <kevin@canyon23.net>
parents: 582
diff changeset
   428
Maybe just a single remark that we are omitting some details which appear in our
Kevin Walker <kevin@canyon23.net>
parents: 582
diff changeset
   429
longer paper.}
600
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   430
\nn{SM: for now I disagree: the space expense is pretty minor, and it allows us to be ``in principle" complete. Let's see how we go for length.}
587
38ec3d05d0d8 enrichment; decompositions (meta)
Kevin Walker <kevin@canyon23.net>
parents: 586
diff changeset
   431
\nn{KW: It's not the length I'm worried about --- I was worried about distracting the reader
38ec3d05d0d8 enrichment; decompositions (meta)
Kevin Walker <kevin@canyon23.net>
parents: 586
diff changeset
   432
with an arcane technical issue.  But we can decide later.}
583
Kevin Walker <kevin@canyon23.net>
parents: 582
diff changeset
   433
574
e5ab1b074d88 minor edits and cleanup
Scott Morrison <scott@tqft.net>
parents: 573
diff changeset
   434
A \emph{ball decomposition} of $W$ is a 
573
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   435
sequence of gluings $M_0\to M_1\to\cdots\to M_m = W$ such that $M_0$ is a disjoint union of balls
574
e5ab1b074d88 minor edits and cleanup
Scott Morrison <scott@tqft.net>
parents: 573
diff changeset
   436
$\du_a X_a$ and each $M_i$ is a manifold.
e5ab1b074d88 minor edits and cleanup
Scott Morrison <scott@tqft.net>
parents: 573
diff changeset
   437
If $X_a$ is some component of $M_0$, its image in $W$ need not be a ball; $\bd X_a$ may have been glued to itself.
e5ab1b074d88 minor edits and cleanup
Scott Morrison <scott@tqft.net>
parents: 573
diff changeset
   438
A {\it permissible decomposition} of $W$ is a map
573
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   439
\[
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   440
	\coprod_a X_a \to W,
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   441
\]
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   442
which can be completed to a ball decomposition $\du_a X_a = M_0\to\cdots\to M_m = W$.
574
e5ab1b074d88 minor edits and cleanup
Scott Morrison <scott@tqft.net>
parents: 573
diff changeset
   443
A permissible decomposition is weaker than a ball decomposition; we forget the order in which the balls
e5ab1b074d88 minor edits and cleanup
Scott Morrison <scott@tqft.net>
parents: 573
diff changeset
   444
are glued up to yield $W$, and just require that there is some non-pathological way to do this.
573
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   445
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   446
Given permissible decompositions $x = \{X_a\}$ and $y = \{Y_b\}$ of $W$, we say that $x$ is a refinement
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   447
of $y$, or write $x \le y$, if there is a ball decomposition $\du_a X_a = M_0\to\cdots\to M_m = W$
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   448
with $\du_b Y_b = M_i$ for some $i$.
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   449
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   450
\begin{defn}
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   451
The poset $\cell(W)$ has objects the permissible decompositions of $W$, 
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   452
and a unique morphism from $x$ to $y$ if and only if $x$ is a refinement of $y$.
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   453
See Figure \ref{partofJfig} for an example.
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   454
\end{defn}
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   455
598
20de3d710f77 writing inconclusively about homotopy colimits, but have to run
Scott Morrison <scott@tqft.net>
parents: 597
diff changeset
   456
This poset in fact has more structure, since we can glue together permissible decompositions of $W_1$ and $W_2$ to obtain a permissible decomposition of $W_1 \sqcup W_2$. 
573
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   457
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   458
An $n$-category $\cC$ determines 
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   459
a functor $\psi_{\cC;W}$ from $\cell(W)$ to the category of sets 
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   460
(possibly with additional structure if $k=n$).
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   461
Each $k$-ball $X$ of a decomposition $y$ of $W$ has its boundary decomposed into $k{-}1$-balls,
574
e5ab1b074d88 minor edits and cleanup
Scott Morrison <scott@tqft.net>
parents: 573
diff changeset
   462
and there is a subset $\cC(X)\spl \sub \cC(X)$ of morphisms whose boundaries
573
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   463
are splittable along this decomposition.
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   464
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   465
\begin{defn}
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   466
Define the functor $\psi_{\cC;W} : \cell(W) \to \Set$ as follows.
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   467
For a decomposition $x = \bigsqcup_a X_a$ in $\cell(W)$, $\psi_{\cC;W}(x)$ is the subset
574
e5ab1b074d88 minor edits and cleanup
Scott Morrison <scott@tqft.net>
parents: 573
diff changeset
   468
\begin{equation*}
e5ab1b074d88 minor edits and cleanup
Scott Morrison <scott@tqft.net>
parents: 573
diff changeset
   469
%\label{eq:psi-C}
573
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   470
	\psi_{\cC;W}(x) \sub \prod_a \cC(X_a)\spl
574
e5ab1b074d88 minor edits and cleanup
Scott Morrison <scott@tqft.net>
parents: 573
diff changeset
   471
\end{equation*}
573
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   472
where the restrictions to the various pieces of shared boundaries amongst the cells
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   473
$X_a$ all agree (this is a fibered product of all the labels of $n$-cells over the labels of $n-1$-cells). When $k=n$, the `subset' and `product' in the above formula should be interpreted in the appropriate enriching category.
573
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   474
If $x$ is a refinement of $y$, the map $\psi_{\cC;W}(x) \to \psi_{\cC;W}(y)$ is given by the composition maps of $\cC$.
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   475
\end{defn}
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   476
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   477
We will use the term `field on $W$' to refer to \nn{a point} of this functor,
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   478
that is, a permissible decomposition $x$ of $W$ together with an element of $\psi_{\cC;W}(x)$.
573
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   479
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   480
\todo{Mention that the axioms for $n$-categories can be stated in terms of decompositions of balls?}
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   481
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   482
\subsubsection{Homotopy colimits}
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   483
\nn{Motivation: How can we extend an $n$-category from balls to arbitrary manifolds?}
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   484
598
20de3d710f77 writing inconclusively about homotopy colimits, but have to run
Scott Morrison <scott@tqft.net>
parents: 597
diff changeset
   485
We can now give a straightforward but rather abstract definition of the blob complex of an $n$-manifold $W$
20de3d710f77 writing inconclusively about homotopy colimits, but have to run
Scott Morrison <scott@tqft.net>
parents: 597
diff changeset
   486
with coefficients in the $n$-category $\cC$ as the homotopy colimit along $\cell(W)$
20de3d710f77 writing inconclusively about homotopy colimits, but have to run
Scott Morrison <scott@tqft.net>
parents: 597
diff changeset
   487
of the functor $\psi_{\cC; W}$ described above. We write this as $\clh{\cC}(W)$.
20de3d710f77 writing inconclusively about homotopy colimits, but have to run
Scott Morrison <scott@tqft.net>
parents: 597
diff changeset
   488
599
ae1ee41f20dd various
Scott Morrison <scott@tqft.net>
parents: 598
diff changeset
   489
An explicit realization of the homotopy colimit is provided by the simplices of the functor $\psi_{\cC; W}$. That is, $$\clh{\cC}(W) = \DirectSum_{\bar{x}} \psi_{\cC; W}(x_0)[m],$$ where $\bar{x} = x_0 \leq \cdots \leq x_m$ is a simplex in $\cell(W)$. The differential acts on $(\bar{x},a)$ (here $a \in \psi_{\cC; W}(x_0)$) as
ae1ee41f20dd various
Scott Morrison <scott@tqft.net>
parents: 598
diff changeset
   490
$$\bdy (\bar{x},a) = (\bar{x}, \bdy a) + (-1)^{\deg a} \left( (d_0 \bar{x}, g(a)) + \sum_{i=1}^m (-1)^i (d_i \bar{x}, a) \right)$$
ae1ee41f20dd various
Scott Morrison <scott@tqft.net>
parents: 598
diff changeset
   491
where $g$ is the gluing map from $x_0$ to $x_1$, and $d_i \bar{x}$ denotes the $i$-th face of the simplex $\bar{x}$.
598
20de3d710f77 writing inconclusively about homotopy colimits, but have to run
Scott Morrison <scott@tqft.net>
parents: 597
diff changeset
   492
599
ae1ee41f20dd various
Scott Morrison <scott@tqft.net>
parents: 598
diff changeset
   493
Alternatively, we can take advantage of the product structure on $\cell(W)$ to realize the homotopy colimit as the cone-product polyhedra of the functor $\psi_{\cC;W}$. (A cone-product polyhedra is obtained from a point by successively taking the cone or taking the product with another cone-product polyhedron; just as simplices correspond to linear graphs, cone-product polyheda correspond to directed trees.) A Eilenberg-Zilber subdivision argument shows this is the same as the usual realization.
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   494
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   495
When $\cC$ is a topological $n$-category,
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   496
the flexibility available in the construction of a homotopy colimit allows
599
ae1ee41f20dd various
Scott Morrison <scott@tqft.net>
parents: 598
diff changeset
   497
us to give a much more explicit description of the blob complex which we'll write as $\bc_*(W; \cC)$.
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   498
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   499
We say a collection of balls $\{B_i\}$ in a manifold $W$ is \emph{permissible}
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   500
if there exists a permissible decomposition $M_0\to\cdots\to M_m = W$ such that
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   501
each $B_i$ appears as a connected component of one of the $M_j$. Note that this allows the balls to be pairwise either disjoint or nested. Such a collection of balls cuts $W$ into pieces, the connected components of $W \setminus \bigcup \bdy B_i$. These pieces need not be manifolds, but they do automatically have permissible decompositions.
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   502
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   503
The $k$-blob group $\bc_k(W; \cC)$ is generated by the $k$-blob diagrams. A $k$-blob diagram consists of
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   504
\begin{itemize}
580
99611dfed1f3 k-blobs for small k, and blob cochains
Scott Morrison <scott@tqft.net>
parents: 579
diff changeset
   505
\item a permissible collection of $k$ embedded balls,
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   506
\item an ordering of the balls, and
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   507
\item for each resulting piece of $W$, a field,
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   508
\end{itemize}
585
e2996d7b4e6c various, mostly working on axioms
Scott Morrison <scott@tqft.net>
parents: 584
diff changeset
   509
such that for any innermost blob $B$, the field on $B$ goes to zero under the gluing map from $\cC$. We call such a field a `null field on $B$'.
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   510
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   511
The differential acts on a $k$-blob diagram by summing over ways to forget one of the $k$ blobs, with signs given by the ordering.
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   512
598
20de3d710f77 writing inconclusively about homotopy colimits, but have to run
Scott Morrison <scott@tqft.net>
parents: 597
diff changeset
   513
We now spell this out for some small values of $k$. For $k=0$, the $0$-blob group is simply fields on $W$. For $k=1$, a generator consists of a field on $W$ and a ball, such that the restriction of the field to that ball is a null field. The differential simply forgets the ball. Thus we see that $H_0$ of the blob complex is the quotient of fields by fields which are null on some ball.
580
99611dfed1f3 k-blobs for small k, and blob cochains
Scott Morrison <scott@tqft.net>
parents: 579
diff changeset
   514
99611dfed1f3 k-blobs for small k, and blob cochains
Scott Morrison <scott@tqft.net>
parents: 579
diff changeset
   515
For $k=2$, we have a two types of generators; they each consists of a field $f$ on $W$, and two balls $B_1$ and $B_2$. In the first case, the balls are disjoint, and $f$ restricted to either of the $B_i$ is a null field. In the second case, the balls are properly nested, say $B_1 \subset B_2$, and $f$ restricted to $B_1$ is null. Note that this implies that $f$ restricted to $B_2$ is also null, by the associativity of the gluing operation. This ensures that the differential is well-defined.
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   516
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   517
\section{Properties of the blob complex}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   518
\subsection{Formal properties}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   519
\label{sec:properties}
584
Scott Morrison <scott@tqft.net>
parents: 583
diff changeset
   520
The blob complex enjoys the following list of formal properties. The first three properties are immediate from the definitions.
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   521
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   522
\begin{property}[Functoriality]
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   523
\label{property:functoriality}%
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   524
The blob complex is functorial with respect to homeomorphisms.
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   525
That is, 
574
e5ab1b074d88 minor edits and cleanup
Scott Morrison <scott@tqft.net>
parents: 573
diff changeset
   526
for a fixed $n$-category $\cC$, the association
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   527
\begin{equation*}
574
e5ab1b074d88 minor edits and cleanup
Scott Morrison <scott@tqft.net>
parents: 573
diff changeset
   528
X \mapsto \bc_*(X; \cC)
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   529
\end{equation*}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   530
is a functor from $n$-manifolds and homeomorphisms between them to chain 
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   531
complexes and isomorphisms between them.
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   532
\end{property}
574
e5ab1b074d88 minor edits and cleanup
Scott Morrison <scott@tqft.net>
parents: 573
diff changeset
   533
As a consequence, there is an action of $\Homeo(X)$ on the chain complex $\bc_*(X; \cC)$; 
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   534
this action is extended to all of $C_*(\Homeo(X))$ in Theorem \ref{thm:CH} below.
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   535
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   536
\begin{property}[Disjoint union]
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   537
\label{property:disjoint-union}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   538
The blob complex of a disjoint union is naturally isomorphic to the tensor product of the blob complexes.
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   539
\begin{equation*}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   540
\bc_*(X_1 \du X_2) \iso \bc_*(X_1) \tensor \bc_*(X_2)
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   541
\end{equation*}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   542
\end{property}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   543
574
e5ab1b074d88 minor edits and cleanup
Scott Morrison <scott@tqft.net>
parents: 573
diff changeset
   544
If an $n$-manifold $X$ contains $Y \sqcup Y^\text{op}$ (we allow $Y = \eset$) as a codimension $0$ submanifold of its boundary, 
e5ab1b074d88 minor edits and cleanup
Scott Morrison <scott@tqft.net>
parents: 573
diff changeset
   545
write $X \bigcup_{Y}\selfarrow$ for the manifold obtained by gluing together $Y$ and $Y^\text{op}$.
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   546
\begin{property}[Gluing map]
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   547
\label{property:gluing-map}%
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   548
%If $X_1$ and $X_2$ are $n$-manifolds, with $Y$ a codimension $0$-submanifold of $\bdy X_1$, and $Y^{\text{op}}$ a codimension $0$-submanifold of $\bdy X_2$, there is a chain map
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   549
%\begin{equation*}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   550
%\gl_Y: \bc_*(X_1) \tensor \bc_*(X_2) \to \bc_*(X_1 \cup_Y X_2).
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   551
%\end{equation*}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   552
Given a gluing $X \to X_\mathrm{gl}$, there is
574
e5ab1b074d88 minor edits and cleanup
Scott Morrison <scott@tqft.net>
parents: 573
diff changeset
   553
a map
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   554
\[
574
e5ab1b074d88 minor edits and cleanup
Scott Morrison <scott@tqft.net>
parents: 573
diff changeset
   555
	\bc_*(X) \to \bc_*(X \bigcup_{Y}\selfarrow),
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   556
\]
574
e5ab1b074d88 minor edits and cleanup
Scott Morrison <scott@tqft.net>
parents: 573
diff changeset
   557
natural with respect to homeomorphisms, and associative with respect to iterated gluings.
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   558
\end{property}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   559
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   560
\begin{property}[Contractibility]
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   561
\label{property:contractibility}%
589
14b7d867e423 a few changes, maybe bad ones...
Scott Morrison <scott@tqft.net>
parents: 577
diff changeset
   562
The blob complex on an $n$-ball is contractible in the sense 
14b7d867e423 a few changes, maybe bad ones...
Scott Morrison <scott@tqft.net>
parents: 577
diff changeset
   563
that it is homotopic to its $0$-th homology, and this is just the vector space associated to the ball by the $n$-category.
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   564
\begin{equation*}
589
14b7d867e423 a few changes, maybe bad ones...
Scott Morrison <scott@tqft.net>
parents: 577
diff changeset
   565
\xymatrix{\bc_*(B^n;\cC) \ar[r]^(0.4){\iso}_(0.4){\text{qi}} & H_0(\bc_*(B^n;\cC)) \ar[r]^(0.6)\iso & \cC(B^n)}
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   566
\end{equation*}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   567
\end{property}
589
14b7d867e423 a few changes, maybe bad ones...
Scott Morrison <scott@tqft.net>
parents: 577
diff changeset
   568
\nn{maybe should say something about the $A_\infty$ case}
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   569
583
Kevin Walker <kevin@canyon23.net>
parents: 582
diff changeset
   570
\begin{proof}(Sketch)
Kevin Walker <kevin@canyon23.net>
parents: 582
diff changeset
   571
For $k\ge 1$, the contracting homotopy sends a $k$-blob diagram to the $(k{+}1)$-blob diagram
Kevin Walker <kevin@canyon23.net>
parents: 582
diff changeset
   572
obtained by adding an outer $(k{+}1)$-st blob consisting of all $B^n$.
Kevin Walker <kevin@canyon23.net>
parents: 582
diff changeset
   573
For $k=0$ we choose a splitting $s: H_0(\bc_*(B^n)) \to \bc_0(B^n)$ and send 
Kevin Walker <kevin@canyon23.net>
parents: 582
diff changeset
   574
$x\in \bc_0(B^n)$ to $x - s([x])$, where $[x]$ denotes the image of $x$ in $H_0(\bc_*(B^n))$.
Kevin Walker <kevin@canyon23.net>
parents: 582
diff changeset
   575
\end{proof}
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   576
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   577
\subsection{Specializations}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   578
\label{sec:specializations}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   579
574
e5ab1b074d88 minor edits and cleanup
Scott Morrison <scott@tqft.net>
parents: 573
diff changeset
   580
The blob complex has two important special cases.
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   581
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   582
\begin{thm}[Skein modules]
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   583
\label{thm:skein-modules}
589
14b7d867e423 a few changes, maybe bad ones...
Scott Morrison <scott@tqft.net>
parents: 577
diff changeset
   584
\nn{Plain n-categories only?}
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   585
The $0$-th blob homology of $X$ is the usual 
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   586
(dual) TQFT Hilbert space (a.k.a.\ skein module) associated to $X$
589
14b7d867e423 a few changes, maybe bad ones...
Scott Morrison <scott@tqft.net>
parents: 577
diff changeset
   587
by $\cC$.
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   588
\begin{equation*}
589
14b7d867e423 a few changes, maybe bad ones...
Scott Morrison <scott@tqft.net>
parents: 577
diff changeset
   589
H_0(\bc_*(X;\cC)) \iso A_{\cC}(X)
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   590
\end{equation*}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   591
\end{thm}
599
ae1ee41f20dd various
Scott Morrison <scott@tqft.net>
parents: 598
diff changeset
   592
This follows from the fact that the $0$-th homology of a homotopy colimit is the usual colimit, or directly from the explicit description of the blob complex.
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   593
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   594
\begin{thm}[Hochschild homology when $X=S^1$]
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   595
\label{thm:hochschild}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   596
The blob complex for a $1$-category $\cC$ on the circle is
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   597
quasi-isomorphic to the Hochschild complex.
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   598
\begin{equation*}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   599
\xymatrix{\bc_*(S^1;\cC) \ar[r]^(0.47){\iso}_(0.47){\text{qi}} & \HC_*(\cC).}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   600
\end{equation*}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   601
\end{thm}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   602
574
e5ab1b074d88 minor edits and cleanup
Scott Morrison <scott@tqft.net>
parents: 573
diff changeset
   603
Theorem \ref{thm:skein-modules} is immediate from the definition, and
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   604
Theorem \ref{thm:hochschild} is established by extending the statement to bimodules as well as categories, then verifying that the universal properties of Hochschild homology also hold for $\bc_*(S^1; -)$.
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   605
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   606
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   607
\subsection{Structure of the blob complex}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   608
\label{sec:structure}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   609
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   610
In the following $\CH{X} = C_*(\Homeo(X))$ is the singular chain complex of the space of homeomorphisms of $X$, fixed on $\bdy X$.
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   611
585
e2996d7b4e6c various, mostly working on axioms
Scott Morrison <scott@tqft.net>
parents: 584
diff changeset
   612
\begin{thm}
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   613
\label{thm:CH}\label{thm:evaluation}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   614
There is a chain map
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   615
\begin{equation*}
585
e2996d7b4e6c various, mostly working on axioms
Scott Morrison <scott@tqft.net>
parents: 584
diff changeset
   616
e_X: \CH{X} \tensor \bc_*(X) \to \bc_*(X)
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   617
\end{equation*}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   618
such that
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   619
\begin{enumerate}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   620
\item Restricted to $CH_0(X)$ this is the action of homeomorphisms described in Property \ref{property:functoriality}. 
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   621
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   622
\item For
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   623
any codimension $0$-submanifold $Y \sqcup Y^\text{op} \subset \bdy X$ the following diagram
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   624
(using the gluing maps described in Property \ref{property:gluing-map}) commutes (up to homotopy).
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   625
\begin{equation*}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   626
\xymatrix@C+0.3cm{
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   627
     \CH{X} \otimes \bc_*(X)
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   628
        \ar[r]_{e_{X}}  \ar[d]^{\gl^{\Homeo}_Y \otimes \gl_Y}  &
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   629
            \bc_*(X) \ar[d]_{\gl_Y} \\
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   630
     \CH{X \bigcup_Y \selfarrow} \otimes \bc_*(X \bigcup_Y \selfarrow) \ar[r]_<<<<<<<{e_{(X \bigcup_Y \scalebox{0.5}{\selfarrow})}}    & \bc_*(X \bigcup_Y \selfarrow)
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   631
}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   632
\end{equation*}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   633
\end{enumerate}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   634
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   635
Futher, this map is associative, in the sense that the following diagram commutes (up to homotopy).
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   636
\begin{equation*}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   637
\xymatrix{
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   638
\CH{X} \tensor \CH{X} \tensor \bc_*(X) \ar[r]^<<<<<{\id \tensor e_X} \ar[d]^{\compose \tensor \id} & \CH{X} \tensor \bc_*(X) \ar[d]^{e_X} \\
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   639
\CH{X} \tensor \bc_*(X) \ar[r]^{e_X} & \bc_*(X)
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   640
}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   641
\end{equation*}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   642
\end{thm}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   643
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   644
Since the blob complex is functorial in the manifold $X$, this is equivalent to having chain maps
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   645
$$ev_{X \to Y} : \CH{X \to Y} \tensor \bc_*(X) \to \bc_*(Y)$$
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   646
for any homeomorphic pair $X$ and $Y$, 
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   647
satisfying corresponding conditions.
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   648
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   649
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   650
585
e2996d7b4e6c various, mostly working on axioms
Scott Morrison <scott@tqft.net>
parents: 584
diff changeset
   651
\begin{thm}
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   652
\label{thm:blobs-ainfty}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   653
Let $\cC$ be  a topological $n$-category.
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   654
Let $Y$ be an $n{-}k$-manifold. 
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   655
There is an $A_\infty$ $k$-category $\bc_*(Y;\cC)$, defined on each $m$-ball $D$, for $0 \leq m < k$, 
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   656
to be the set $$\bc_*(Y;\cC)(D) = \cC(Y \times D)$$ and on $k$-balls $D$ to be the set 
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   657
$$\bc_*(Y;\cC)(D) = \bc_*(Y \times D; \cC).$$ 
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   658
(When $m=k$ the subsets with fixed boundary conditions form a chain complex.) 
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   659
These sets have the structure of an $A_\infty$ $k$-category, with compositions coming from the gluing map in 
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   660
Property \ref{property:gluing-map} and with the action of families of homeomorphisms given in Theorem \ref{thm:evaluation}.
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   661
\end{thm}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   662
\begin{rem}
585
e2996d7b4e6c various, mostly working on axioms
Scott Morrison <scott@tqft.net>
parents: 584
diff changeset
   663
When $Y$ is a point this gives $A_\infty$ $n$-category from a topological $n$-category, which can be thought of as a free resolution.
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   664
\end{rem}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   665
This result is described in more detail as Example 6.2.8 of \cite{1009.5025}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   666
574
e5ab1b074d88 minor edits and cleanup
Scott Morrison <scott@tqft.net>
parents: 573
diff changeset
   667
We next describe the blob complex for product manifolds, in terms of the $A_\infty$ blob complex of the $A_\infty$ $n$-categories constructed as above.
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   668
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   669
\begin{thm}[Product formula]
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   670
\label{thm:product}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   671
Let $W$ be a $k$-manifold and $Y$ be an $n-k$ manifold.
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   672
Let $\cC$ be an $n$-category.
599
ae1ee41f20dd various
Scott Morrison <scott@tqft.net>
parents: 598
diff changeset
   673
Let $\bc_*(Y;\cC)$ be the $A_\infty$ $k$-category associated to $Y$ as above.
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   674
Then
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   675
\[
598
20de3d710f77 writing inconclusively about homotopy colimits, but have to run
Scott Morrison <scott@tqft.net>
parents: 597
diff changeset
   676
	\bc_*(Y\times W; \cC) \simeq \clh{\bc_*(Y;\cC)}(W).
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   677
\]
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   678
\end{thm}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   679
The statement can be generalized to arbitrary fibre bundles, and indeed to arbitrary maps
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   680
(see \cite[\S7.1]{1009.5025}).
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   681
599
ae1ee41f20dd various
Scott Morrison <scott@tqft.net>
parents: 598
diff changeset
   682
Fix a topological $n$-category $\cC$, which we'll now omit from notation.
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   683
Recall that for any $(n-1)$-manifold $Y$, the blob complex $\bc_*(Y)$ is naturally an $A_\infty$ category.
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   684
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   685
\begin{thm}[Gluing formula]
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   686
\label{thm:gluing}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   687
\mbox{}% <-- gets the indenting right
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   688
\begin{itemize}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   689
\item For any $n$-manifold $X$, with $Y$ a codimension $0$-submanifold of its boundary, the blob complex of $X$ is naturally an
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   690
$A_\infty$ module for $\bc_*(Y)$.
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   691
585
e2996d7b4e6c various, mostly working on axioms
Scott Morrison <scott@tqft.net>
parents: 584
diff changeset
   692
\item The blob complex of a glued manifold $X\bigcup_Y \selfarrow$ is the $A_\infty$ self-tensor product of
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   693
$\bc_*(X)$ as an $\bc_*(Y)$-bimodule:
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   694
\begin{equation*}
585
e2996d7b4e6c various, mostly working on axioms
Scott Morrison <scott@tqft.net>
parents: 584
diff changeset
   695
\bc_*(X\bigcup_Y \selfarrow) \simeq \bc_*(X) \Tensor^{A_\infty}_{\mathclap{\bc_*(Y)}} \selfarrow
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   696
\end{equation*}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   697
\end{itemize}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   698
\end{thm}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   699
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   700
\nn{Theorem \ref{thm:product} is proved in \S \ref{ss:product-formula}, and Theorem \ref{thm:gluing} in \S \ref{sec:gluing}.}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   701
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   702
\section{Applications}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   703
\label{sec:applications}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   704
Finally, we give two applications of the above machinery.
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   705
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   706
\begin{thm}[Mapping spaces]
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   707
\label{thm:map-recon}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   708
Let $\pi^\infty_{\le n}(T)$ denote the $A_\infty$ $n$-category based on maps 
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   709
$B^n \to T$.
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   710
(The case $n=1$ is the usual $A_\infty$-category of paths in $T$.)
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   711
Then 
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   712
$$\bc_*(X; \pi^\infty_{\le n}(T)) \simeq \CM{X}{T}.$$
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   713
\end{thm}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   714
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   715
This says that we can recover (up to homotopy) the space of maps to $T$ via blob homology from local data. 
574
e5ab1b074d88 minor edits and cleanup
Scott Morrison <scott@tqft.net>
parents: 573
diff changeset
   716
Note that there is no restriction on the connectivity of $T$ as there is for the corresponding result in topological chiral homology \cite[Theorem 3.8.6]{0911.0018}.
580
99611dfed1f3 k-blobs for small k, and blob cochains
Scott Morrison <scott@tqft.net>
parents: 579
diff changeset
   717
\todo{sketch proof}
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   718
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   719
\begin{thm}[Higher dimensional Deligne conjecture]
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   720
\label{thm:deligne}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   721
The singular chains of the $n$-dimensional surgery cylinder operad act on blob cochains.
577
9a60488cd2fc out of battery. writing a little about the deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 575
diff changeset
   722
Since the little $n{+}1$-balls operad is a suboperad of the $n$-SC operad,
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   723
this implies that the little $n{+}1$-balls operad acts on blob cochains of the $n$-ball.
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   724
\end{thm}
577
9a60488cd2fc out of battery. writing a little about the deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 575
diff changeset
   725
580
99611dfed1f3 k-blobs for small k, and blob cochains
Scott Morrison <scott@tqft.net>
parents: 579
diff changeset
   726
An $n$-dimensional surgery cylinder is a sequence of mapping cylinders and surgeries (Figure \ref{delfig2}), modulo changing the order of distant surgeries, and conjugating a submanifold not modified in a surgery by a homeomorphism. Surgery cylinders form an operad, by gluing the outer boundary of one cylinder into an inner boundary of another.
577
9a60488cd2fc out of battery. writing a little about the deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 575
diff changeset
   727
580
99611dfed1f3 k-blobs for small k, and blob cochains
Scott Morrison <scott@tqft.net>
parents: 579
diff changeset
   728
By the `blob cochains' of a manifold $X$, we mean the $A_\infty$ maps of $\bc_*(X)$ as a $\bc_*(\bdy X)$ $A_\infty$-module.
577
9a60488cd2fc out of battery. writing a little about the deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 575
diff changeset
   729
595
9c708975b61b making pinched products axioms terser, and writing a short proof of the higher deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 594
diff changeset
   730
\begin{proof}
599
ae1ee41f20dd various
Scott Morrison <scott@tqft.net>
parents: 598
diff changeset
   731
We have already defined the action of mapping cylinders, in Theorem \ref{thm:evaluation}, and the action of surgeries is just composition of maps of $A_\infty$-modules. We only need to check that the relations of the $n$-SC operad are satisfied. This follows immediately from the locality of the action of $\CH{-}$ (i.e., that it is compatible with gluing) and associativity.
595
9c708975b61b making pinched products axioms terser, and writing a short proof of the higher deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 594
diff changeset
   732
\end{proof} 
577
9a60488cd2fc out of battery. writing a little about the deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 575
diff changeset
   733
580
99611dfed1f3 k-blobs for small k, and blob cochains
Scott Morrison <scott@tqft.net>
parents: 579
diff changeset
   734
The little disks operad $LD$ is homotopy equivalent to the $n=1$ case of the $n$-SC operad. The blob complex $\bc_*(I, \cC)$ is a bimodule over itself, and the $A_\infty$-bimodule intertwiners are homotopy equivalent to the Hochschild cohains $Hoch^*(C, C)$. The usual Deligne conjecture (proved variously in \cite{hep-th/9403055, MR1805894, MR2064592, MR1805923}) gives a map
577
9a60488cd2fc out of battery. writing a little about the deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 575
diff changeset
   735
\[
9a60488cd2fc out of battery. writing a little about the deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 575
diff changeset
   736
	C_*(LD_k)\otimes \overbrace{Hoch^*(C, C)\otimes\cdots\otimes Hoch^*(C, C)}^{\text{$k$ copies}}
9a60488cd2fc out of battery. writing a little about the deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 575
diff changeset
   737
			\to  Hoch^*(C, C),
9a60488cd2fc out of battery. writing a little about the deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 575
diff changeset
   738
\]
9a60488cd2fc out of battery. writing a little about the deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 575
diff changeset
   739
which we now see to be a specialization of Theorem \ref{thm:deligne}.
9a60488cd2fc out of battery. writing a little about the deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 575
diff changeset
   740
566
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   741
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   742
%% == end of paper:
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   743
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   744
%% Optional Materials and Methods Section
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   745
%% The Materials and Methods section header will be added automatically.
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   746
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   747
%% Enter any subheads and the Materials and Methods text below.
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   748
%\begin{materials}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   749
% Materials text
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   750
%\end{materials}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   751
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   752
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   753
%% Optional Appendix or Appendices
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   754
%% \appendix Appendix text...
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   755
%% or, for appendix with title, use square brackets:
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   756
%% \appendix[Appendix Title]
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   757
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   758
\begin{acknowledgments}
595
9c708975b61b making pinched products axioms terser, and writing a short proof of the higher deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 594
diff changeset
   759
\nn{say something here}
566
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   760
\end{acknowledgments}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   761
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   762
%% PNAS does not support submission of supporting .tex files such as BibTeX.
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   763
%% Instead all references must be included in the article .tex document. 
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   764
%% If you currently use BibTeX, your bibliography is formed because the 
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   765
%% command \verb+\bibliography{}+ brings the <filename>.bbl file into your
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   766
%% .tex document. To conform to PNAS requirements, copy the reference listings
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   767
%% from your .bbl file and add them to the article .tex file, using the
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   768
%% bibliography environment described above.  
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   769
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   770
%%  Contact pnas@nas.edu if you need assistance with your
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   771
%%  bibliography.
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   772
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   773
% Sample bibliography item in PNAS format:
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   774
%% \bibitem{in-text reference} comma-separated author names up to 5,
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   775
%% for more than 5 authors use first author last name et al. (year published)
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   776
%% article title  {\it Journal Name} volume #: start page-end page.
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   777
%% ie,
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   778
% \bibitem{Neuhaus} Neuhaus J-M, Sitcher L, Meins F, Jr, Boller T (1991) 
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   779
% A short C-terminal sequence is necessary and sufficient for the
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   780
% targeting of chitinases to the plant vacuole. 
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   781
% {\it Proc Natl Acad Sci USA} 88:10362-10366.
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   782
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   783
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   784
%% Enter the largest bibliography number in the facing curly brackets
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   785
%% following \begin{thebibliography}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   786
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   787
%%%% BIBTEX
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   788
\bibliographystyle{alpha}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   789
\bibliography{../bibliography/bibliography}
566
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   790
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   791
%%%% non-BIBTEX
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   792
%\begin{thebibliography}{}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   793
%
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   794
%\end{thebibliography}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   795
566
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   796
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   797
\end{article}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   798
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   799
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   800
%% Adding Figure and Table References
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   801
%% Be sure to add figures and tables after \end{article}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   802
%% and before \end{document}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   803
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   804
%% For figures, put the caption below the illustration.
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   805
%%
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   806
%% \begin{figure}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   807
%% \caption{Almost Sharp Front}\label{afoto}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   808
%% \end{figure}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   809
573
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   810
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   811
\begin{figure}
594
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
   812
\centering
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
   813
\begin{tikzpicture}[%every label/.style={green}
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
   814
]
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
   815
\node[fill=black, circle, label=below:$E$, inner sep=1.5pt](S) at (0,0) {};
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
   816
\node[fill=black, circle, label=above:$E$, inner sep=1.5pt](N) at (0,2) {};
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
   817
\draw (S) arc  (-90:90:1);
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
   818
\draw (N) arc  (90:270:1);
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
   819
\node[left] at (-1,1) {$B_1$};
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
   820
\node[right] at (1,1) {$B_2$};
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
   821
\end{tikzpicture}
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
   822
\caption{Combining two balls to get a full boundary.}\label{blah3}\end{figure}
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
   823
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
   824
\begin{figure}
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
   825
\centering
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
   826
\begin{tikzpicture}[%every label/.style={green},
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
   827
				x=1.5cm,y=1.5cm]
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
   828
\node[fill=black, circle, label=below:$E$, inner sep=2pt](S) at (0,0) {};
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
   829
\node[fill=black, circle, label=above:$E$, inner sep=2pt](N) at (0,2) {};
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
   830
\draw (S) arc  (-90:90:1);
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
   831
\draw (N) arc  (90:270:1);
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
   832
\draw (N) -- (S);
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
   833
\node[left] at (-1/4,1) {$B_1$};
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
   834
\node[right] at (1/4,1) {$B_2$};
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
   835
\node at (1/6,3/2)  {$Y$};
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
   836
\end{tikzpicture}
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
   837
\caption{From two balls to one ball.}\label{blah5}\end{figure}
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
   838
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
   839
\begin{figure}
573
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   840
\begin{equation*}
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   841
\mathfig{.23}{ncat/zz2}
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   842
\end{equation*}
594
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
   843
\caption{A small part of $\cell(W)$.}
573
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   844
\label{partofJfig}
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   845
\end{figure}
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   846
577
9a60488cd2fc out of battery. writing a little about the deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 575
diff changeset
   847
\begin{figure}
9a60488cd2fc out of battery. writing a little about the deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 575
diff changeset
   848
$$\mathfig{.4}{deligne/manifolds}$$
594
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
   849
\caption{An $n$-dimensional surgery cylinder.}\label{delfig2}
577
9a60488cd2fc out of battery. writing a little about the deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 575
diff changeset
   850
\end{figure}
9a60488cd2fc out of battery. writing a little about the deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 575
diff changeset
   851
573
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   852
566
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   853
%% For Tables, put caption above table
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   854
%%
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   855
%% Table caption should start with a capital letter, continue with lower case
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   856
%% and not have a period at the end
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   857
%% Using @{\vrule height ?? depth ?? width0pt} in the tabular preamble will
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   858
%% keep that much space between every line in the table.
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   859
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   860
%% \begin{table}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   861
%% \caption{Repeat length of longer allele by age of onset class}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   862
%% \begin{tabular}{@{\vrule height 10.5pt depth4pt  width0pt}lrcccc}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   863
%% table text
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   864
%% \end{tabular}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   865
%% \end{table}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   866
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   867
%% For two column figures and tables, use the following:
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   868
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   869
%% \begin{figure*}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   870
%% \caption{Almost Sharp Front}\label{afoto}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   871
%% \end{figure*}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   872
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   873
%% \begin{table*}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   874
%% \caption{Repeat length of longer allele by age of onset class}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   875
%% \begin{tabular}{ccc}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   876
%% table text
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   877
%% \end{tabular}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   878
%% \end{table*}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   879
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   880
\end{document}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   881