text/smallblobs.tex
changeset 233 0488412c274b
parent 225 32a76e8886d1
child 237 d42ae7a54143
equal deleted inserted replaced
232:9a459c7f360e 233:0488412c274b
     1 %!TEX root = ../blob1.tex
     1 %!TEX root = ../blob1.tex
     2 \nn{Not sure where this goes yet: small blobs, unfinished:}
     2 \nn{Not sure where this goes yet: small blobs, unfinished:}
     3 
     3 
     4 Fix $\cU$, an open cover of $M$. Define the `small blob complex' $\bc^{\cU}_*(M)$ to be the subcomplex of $\bc_*(M)$ of all blob diagrams in which every blob is contained in some open set of $\cU$.
     4 Fix $\cU$, an open cover of $M$. Define the `small blob complex' $\bc^{\cU}_*(M)$ to be the subcomplex of $\bc_*(M)$ of all blob diagrams in which every blob is contained in some open set of $\cU$. Say that an open cover $\cV$ is strictly subordinate to $\cU$ if every open set of $\cV$ is contained in some closed set which is contained in some open set of $\cU$.
       
     5 
       
     6 \begin{lem}
       
     7 For any open cover $\cU$ of $M$ and strictly subordinate open cover $\cV$, we can choose an up-to-homotopy representative $\ev_{X,\cU,\cV}$ of the chain map $\ev_X$ of Property ?? which gives the action of families of homeomorphisms, so that the restriction of $\ev_{X,\cU,\cV} : \CH{X} \tensor \bc_*(X) \to \bc_*(X)$ to the subcomplex $\CH{X} \tensor \bc^{\cV}_*(X)$ has image contained in the small blob complex $\bc^{\cU}_*(X)$.
       
     8 \end{lem}
       
     9 \begin{rem}
       
    10 This says that while we can't quite get a map $\CH{X} \tensor \bc^{\cU}_*(X) \to \bc^{\cU}_*(X)$, we can get by if we give ourselves arbitrarily little room to maneuver, by making the blobs we act on slightly smaller.
       
    11 \end{rem}
       
    12 \begin{proof}
       
    13 \todo{We have to choose the open cover differently for each $k$...}
       
    14 We choose yet another open cover, $\cW$, which so fine that the union (disjoint or not) of any one open set $V \in \cV$ with $k$ open sets $W_i \in \cW$ is contained in a disjoint union of open sets of $\cU$.
       
    15 \todo{explain why we can do this, and then why it works.}
       
    16 \end{proof}
     5 
    17 
     6 \begin{thm}[Small blobs]
    18 \begin{thm}[Small blobs]
     7 The inclusion $i: \bc^{\cU}_*(M) \into \bc_*(M)$ is a homotopy equivalence.
    19 The inclusion $i: \bc^{\cU}_*(M) \into \bc_*(M)$ is a homotopy equivalence.
     8 \end{thm}
    20 \end{thm}
     9 \begin{proof}
    21 \begin{proof}
    10 We begin by describing the homotopy inverse in small degrees, to illustrate the general technique.
    22 We begin by describing the homotopy inverse in small degrees, to illustrate the general technique.
    11 We will construct a chain map $s:  \bc_*(M) \to \bc^{\cU}_*(M)$ and a homotopy $h:\bc_*(M) \to \bc_{*+1}(M)$ so that $\bdy h+h \bdy=i\circ s - \id$. The composition $s \circ i$ will just be the identity.
    23 We will construct a chain map $s:  \bc_*(M) \to \bc^{\cU}_*(M)$ and a homotopy $h:\bc_*(M) \to \bc_{*+1}(M)$ so that $\bdy h+h \bdy=i\circ s - \id$. The composition $s \circ i$ will just be the identity.
    12 
    24 
    13 On $0$-blobs, $s$ is just the identity; a blob diagram without any blobs is compatible with any open cover. Nevertheless, we'll begin introducing nomenclature at this point: for configuration $\beta$ of disjoint embedded balls in $M$ we'll associate a one parameter family of homeomorphisms $\phi_\beta : \Delta^1 \to \Homeo(M)$ (here $\Delta^m$ is the standard simplex $\setc{\mathbf{x} \in \Real^{m+1}}{\sum_{i=0}^m x_i = 1}$). For $0$-blobs, where $\beta = \eset$, all these homeomorphisms are just the identity.
    25 On $0$-blobs, $s$ is just the identity; a blob diagram without any blobs is compatible with any open cover. Nevertheless, we'll begin introducing nomenclature at this point: for configuration $\beta$ of disjoint embedded balls in $M$ we'll associate a one parameter family of homeomorphisms $\phi_\beta : \Delta^1 \to \Homeo(M)$ (here $\Delta^m$ is the standard simplex $\setc{\mathbf{x} \in \Real^{m+1}}{\sum_{i=0}^m x_i = 1}$). For $0$-blobs, where $\beta = \eset$, all these homeomorphisms are just the identity.
       
    26 
       
    27 \todo{have to decide which open cover we're going to use in the action of homeomorphisms, and then ensure that we make $\beta$ sufficiently small to apply the lemma above.}
    14 
    28 
    15 On a $1$-blob $b$, with ball $\beta$, $s$ is defined as the sum of two terms. Essentially, the first term `makes $\beta$ small', while the other term `gets the boundary right'. First, pick a one-parameter family $\phi_\beta : \Delta^1 \to \Homeo(M)$ of homeomorphisms, so $\phi_\beta(1,0)$ is the identity and $\phi_\beta(0,1)$ makes the ball $\beta$ small. Next, pick a two-parameter family $\phi_{\eset \prec \beta} : \Delta^2 \to \Homeo(M)$ so that $\phi_{\eset \prec \beta}(0,x_1,x_2)$ makes the ball $\beta$ small for all $x_1+x_2=1$, while $\phi_{\eset \prec \beta}(x_0,0,x_2) = \phi_\eset(x_0,x_2)$ and $\phi_{\eset \prec \beta}(x_0,x_1,0) = \phi_\beta(x_0,x_1)$. (It's perhaps not obvious that this is even possible --- see Lemma \ref{lem:extend-small-homeomorphisms} below.) We now define $s$ by
    29 On a $1$-blob $b$, with ball $\beta$, $s$ is defined as the sum of two terms. Essentially, the first term `makes $\beta$ small', while the other term `gets the boundary right'. First, pick a one-parameter family $\phi_\beta : \Delta^1 \to \Homeo(M)$ of homeomorphisms, so $\phi_\beta(1,0)$ is the identity and $\phi_\beta(0,1)$ makes the ball $\beta$ small. Next, pick a two-parameter family $\phi_{\eset \prec \beta} : \Delta^2 \to \Homeo(M)$ so that $\phi_{\eset \prec \beta}(0,x_1,x_2)$ makes the ball $\beta$ small for all $x_1+x_2=1$, while $\phi_{\eset \prec \beta}(x_0,0,x_2) = \phi_\eset(x_0,x_2)$ and $\phi_{\eset \prec \beta}(x_0,x_1,0) = \phi_\beta(x_0,x_1)$. (It's perhaps not obvious that this is even possible --- see Lemma \ref{lem:extend-small-homeomorphisms} below.) We now define $s$ by
    16 $$s(b) = \restrict{\phi_\beta}{x_0=0}(b) + \restrict{\phi_{\eset \prec \beta}}{x_0=0}(\bdy b).$$
    30 $$s(b) = \restrict{\phi_\beta}{x_0=0}(b) + \restrict{\phi_{\eset \prec \beta}}{x_0=0}(\bdy b).$$
    17 Here, $\restrict{\phi_\beta}{x_0=0} = \phi_\beta(0,1)$ is just a homeomorphism, which we apply to $b$, while $\restrict{\phi_{\eset \prec \beta}}{x_0=0}$ is a one parameter family of homeomorphisms which acts on the $0$-blob $\bdy b$ to give a $1$-blob.
    31 Here, $\restrict{\phi_\beta}{x_0=0} = \phi_\beta(0,1)$ is just a homeomorphism, which we apply to $b$, while $\restrict{\phi_{\eset \prec \beta}}{x_0=0}$ is a one parameter family of homeomorphisms which acts on the $0$-blob $\bdy b$ to give a $1$-blob.
    18 \todo{Does $s$ actually land in small blobs?}
    32 \todo{Does $s$ actually land in small blobs?}