blob1.tex
changeset 33 0535a42fb804
parent 32 538f38ddf395
child 34 f46e6ff9f951
equal deleted inserted replaced
32:538f38ddf395 33:0535a42fb804
  1037 \ref{property:evaluation} and \ref{property:gluing-map} respectively.
  1037 \ref{property:evaluation} and \ref{property:gluing-map} respectively.
  1038 
  1038 
  1039 The definition of a module follows closely the definition of an algebra or category.
  1039 The definition of a module follows closely the definition of an algebra or category.
  1040 \begin{defn}
  1040 \begin{defn}
  1041 \label{defn:topological-module}%
  1041 \label{defn:topological-module}%
  1042 A topological $A_\infty$-(left-)module $M$ over a topological $A_\infty$ category $A$ consists of the data
  1042 A topological $A_\infty$-(left-)module $M$ over a topological $A_\infty$ category $A$ 
       
  1043 consists of the following data.
  1043 \begin{enumerate}
  1044 \begin{enumerate}
  1044 \item a functor $K \mapsto M(K)$ from $1$-manifolds diffeomorphic to the standard interval, with a marked point on a upper boundary, to complexes of vector spaces,
  1045 \item A functor $K \mapsto M(K)$ from $1$-manifolds diffeomorphic to the standard interval, with a marked point on a upper boundary, to complexes of vector spaces.
  1045 \item along with an `evaluation' map $\ev_K : \CD{K} \tensor M(K) \to M(K)$
  1046 \item For each pair of such marked intervals, 
  1046 \item and for each interval $J$ and interval $K$ a marked point on the upper boundary, a gluing map
  1047 an `evaluation' chain map $\ev_{K\to K'} : \CD{K \to K'} \tensor M(K) \to M(K')$.
  1047 $\gl_{J,K} : A(J) \tensor M(K) \to M(J \cup K)$
  1048 \item For each decomposition $K = J\cup K'$ of the marked interval
       
  1049 $K$ into an unmarked interval $J$ and a marked interval $K'$, a gluing map
       
  1050 $\gl_{J,K'} : A(J) \tensor M(K') \to M(K)$.
  1048 \end{enumerate}
  1051 \end{enumerate}
  1049 satisfying the obvious conditions analogous to those in Definition \ref{defn:topological-algebra}.
  1052 The above data is required to satisfy 
       
  1053 conditions analogous to those in Definition \ref{defn:topological-algebra}.
  1050 \end{defn}
  1054 \end{defn}
  1051 
  1055 
  1052 Any manifold $X$ with $\bdy X = Y$ (or indeed just with $Y$ a codimension $0$-submanifold of $\bdy X$) becomes a topological $A_\infty$ module over
  1056 Any manifold $X$ with $\bdy X = Y$ (or indeed just with $Y$ a codimension $0$-submanifold of $\bdy X$) becomes a topological $A_\infty$ module over
  1053 $\bc_*(Y)$, the topological $A_\infty$ category described above. For each interval $K$, we have $M(K) = \bc_*((Y \times K) \cup_Y X)$.
  1057 $\bc_*(Y)$, the topological $A_\infty$ category described above. For each interval $K$, we have $M(K) = \bc_*((Y \times K) \cup_Y X)$.
  1054 (Here we glue $Y \times pt$ to $X$, where $pt$ is the marked point of $K$.) Again, the evaluation and gluing maps come directly from Properties
  1058 (Here we glue $Y \times pt$ to $X$, where $pt$ is the marked point of $K$.) Again, the evaluation and gluing maps come directly from Properties