text/hochschild.tex
changeset 77 071ec509ec4a
parent 74 ea9f0b3c1b14
child 100 c5a43be00ed4
equal deleted inserted replaced
76:16d7f0938baa 77:071ec509ec4a
   403 with
   403 with
   404 \eqar{
   404 \eqar{
   405 	\bd(m\otimes a)  & = & ma - am \\
   405 	\bd(m\otimes a)  & = & ma - am \\
   406 	\bd(m\otimes a \otimes b) & = & ma\otimes b - m\otimes ab + bm \otimes a .
   406 	\bd(m\otimes a \otimes b) & = & ma\otimes b - m\otimes ab + bm \otimes a .
   407 }
   407 }
   408 In degree 0, we send $m\in M$ to the 0-blob diagram in Figure xx0; the base point
   408 In degree 0, we send $m\in M$ to the 0-blob diagram $\mathfig{0.05}{hochschild/0-chains}$; the base point
   409 in $S^1$ is labeled by $m$ and there are no other labeled points.
   409 in $S^1$ is labeled by $m$ and there are no other labeled points.
   410 In degree 1, we send $m\ot a$ to the sum of two 1-blob diagrams
   410 In degree 1, we send $m\ot a$ to the sum of two 1-blob diagrams
   411 as shown in Figure xx1.
   411 as shown in Figure \ref{fig:hochschild-1-chains}.
   412 In degree 2, we send $m\ot a \ot b$ to the sum of 22 (=4+4+4+4+3+3) 2-blob diagrams as shown in
   412 
   413 Figure xx2.
   413 \begin{figure}[!ht]
   414 In Figure xx2 the 1- and 2-blob diagrams are indicated only by their support.
   414 \begin{equation*}
       
   415 \mathfig{0.4}{hochschild/1-chains}
       
   416 \end{equation*}
       
   417 \begin{align*}
       
   418 u_1 & = \mathfig{0.05}{hochschild/u_1-1} - \mathfig{0.05}{hochschild/u_1-2} & u_2 & = \mathfig{0.05}{hochschild/u_2-1} - \mathfig{0.05}{hochschild/u_2-2} 
       
   419 \end{align*}
       
   420 \caption{The image of $m \tensor a$ in the blob complex.}
       
   421 \label{fig:hochschild-1-chains}
       
   422 \end{figure}
       
   423 
       
   424 In degree 2, we send $m\ot a \ot b$ to the sum of 24 (=6*4) 2-blob diagrams as shown in
       
   425 Figure \ref{fig:hochschild-2-chains}. In Figure \ref{fig:hochschild-2-chains} the 1- and 2-blob diagrams are indicated only by their support.
   415 We leave it to the reader to determine the labels of the 1-blob diagrams.
   426 We leave it to the reader to determine the labels of the 1-blob diagrams.
       
   427 \begin{figure}[!ht]
       
   428 \begin{equation*}
       
   429 \mathfig{0.6}{hochschild/2-chains-0}
       
   430 \end{equation*}
       
   431 \begin{equation*}
       
   432 \mathfig{0.4}{hochschild/2-chains-1} \qquad \mathfig{0.4}{hochschild/2-chains-2}
       
   433 \end{equation*}
       
   434 \caption{The 0-, 1- and 2-chains in the image of $m \tensor a \tensor b$. Only the supports of the 1- and 2-blobs are shown.}
       
   435 \label{fig:hochschild-2-chains}
       
   436 \end{figure}
   416 Each 2-cell in the figure is labeled by a ball $V$ in $S^1$ which contains the support of all
   437 Each 2-cell in the figure is labeled by a ball $V$ in $S^1$ which contains the support of all
   417 1-blob diagrams in its boundary.
   438 1-blob diagrams in its boundary.
   418 Such a 2-cell corresponds to a sum of the 2-blob diagrams obtained by adding $V$
   439 Such a 2-cell corresponds to a sum of the 2-blob diagrams obtained by adding $V$
   419 as an outer (non-twig) blob to each of the 1-blob diagrams in the boundary of the 2-cell.
   440 as an outer (non-twig) blob to each of the 1-blob diagrams in the boundary of the 2-cell.
   420 Figure xx3 shows this explicitly for one of the 2-cells.
   441 Figure \ref{fig:hochschild-example-2-cell} shows this explicitly for one of the 2-cells.
   421 Note that the (blob complex) boundary of this sum of 2-blob diagrams is
   442 Note that the (blob complex) boundary of this sum of 2-blob diagrams is
   422 precisely the sum of the 1-blob diagrams corresponding to the boundary of the 2-cell.
   443 precisely the sum of the 1-blob diagrams corresponding to the boundary of the 2-cell.
   423 (Compare with the proof of \ref{bcontract}.)
   444 (Compare with the proof of \ref{bcontract}.)
   424 
   445 
   425 
   446 \begin{figure}[!ht]
   426 
   447 \begin{equation*}
   427 \medskip
   448 A = \mathfig{0.1}{hochschild/v_1} + \mathfig{0.1}{hochschild/v_2} + \mathfig{0.1}{hochschild/v_3} + \mathfig{0.1}{hochschild/v_4}
   428 \nn{old stuff; delete soon....}
   449 \end{equation*}
   429 
   450 \begin{align*}
   430 We can also describe explicitly a map from the standard Hochschild
   451 v_1 & = \mathfig{0.05}{hochschild/v_1-1} -  \mathfig{0.05}{hochschild/v_1-2} &  v_2 & = \mathfig{0.05}{hochschild/v_2-1} -  \mathfig{0.05}{hochschild/v_2-2} \\ 
   431 complex to the blob complex on the circle. \nn{What properties does this
   452 v_3 & = \mathfig{0.05}{hochschild/v_3-1} -  \mathfig{0.05}{hochschild/v_3-2} &  v_4 & = \mathfig{0.05}{hochschild/v_4-1} -  \mathfig{0.05}{hochschild/v_4-2}
   432 map have?}
   453 \end{align*}
   433 
   454 \caption{One of the 2-cells from Figure \ref{fig:hochschild-2-chains}.}
   434 \begin{figure}%
   455 \label{fig:hochschild-example-2-cell}
   435 $$\mathfig{0.6}{barycentric/barycentric}$$
       
   436 \caption{The Hochschild chain $a \tensor b \tensor c$ is sent to
       
   437 the sum of six blob $2$-chains, corresponding to a barycentric subdivision of a $2$-simplex.}
       
   438 \label{fig:Hochschild-example}%
       
   439 \end{figure}
   456 \end{figure}
   440 
       
   441 As an example, Figure \ref{fig:Hochschild-example} shows the image of the Hochschild chain $a \tensor b \tensor c$. Only the $0$-cells are shown explicitly.
       
   442 The edges marked $x, y$ and $z$ carry the $1$-chains
       
   443 \begin{align*}
       
   444 x & = \mathfig{0.1}{barycentric/ux} & u_x = \mathfig{0.1}{barycentric/ux_ca} - \mathfig{0.1}{barycentric/ux_c-a} \\
       
   445 y & = \mathfig{0.1}{barycentric/uy} & u_y = \mathfig{0.1}{barycentric/uy_cab} - \mathfig{0.1}{barycentric/uy_ca-b} \\
       
   446 z & = \mathfig{0.1}{barycentric/uz} & u_z = \mathfig{0.1}{barycentric/uz_c-a-b} - \mathfig{0.1}{barycentric/uz_cab}
       
   447 \end{align*}
       
   448 and the $2$-chain labelled $A$ is
       
   449 \begin{equation*}
       
   450 A = \mathfig{0.1}{barycentric/Ax}+\mathfig{0.1}{barycentric/Ay}.
       
   451 \end{equation*}
       
   452 Note that we then have
       
   453 \begin{equation*}
       
   454 \bdy A = x+y+z.
       
   455 \end{equation*}
       
   456 
       
   457 In general, the Hochschild chain $\Tensor_{i=1}^n a_i$ is sent to the sum of $n!$ blob $(n-1)$-chains, indexed by permutations,
       
   458 $$\phi\left(\Tensor_{i=1}^n a_i\right) = \sum_{\pi} \phi^\pi(a_1, \ldots, a_n)$$
       
   459 with ... (hmmm, problems making this precise; you need to decide where to put the labels, but then it's hard to make an honest chain map!)