text/deligne.tex
changeset 163 0993acb4f314
parent 149 7e8ccb11478d
child 167 cfab8c2189a7
equal deleted inserted replaced
162:cb70a71710a5 163:0993acb4f314
     4 \label{sec:deligne}
     4 \label{sec:deligne}
     5 In this section we discuss Property \ref{property:deligne},
     5 In this section we discuss Property \ref{property:deligne},
     6 \begin{prop}[Higher dimensional Deligne conjecture]
     6 \begin{prop}[Higher dimensional Deligne conjecture]
     7 The singular chains of the $n$-dimensional fat graph operad act on blob cochains.
     7 The singular chains of the $n$-dimensional fat graph operad act on blob cochains.
     8 \end{prop}
     8 \end{prop}
       
     9 
       
    10 We will give a more precise statement of the proposition below.
       
    11 
       
    12 \nn{for now, we just sketch the proof.}
       
    13 
       
    14 \def\mapinf{\Maps_\infty}
       
    15 
       
    16 The usual Deligne conjecture \nn{need refs} gives a map
       
    17 \[
       
    18 	C_*(LD_k)\otimes \overbrace{Hoch^*(C, C)\otimes\cdots\otimes Hoch^*(C, C)}^{\text{$k$ copies}}
       
    19 			\to  Hoch^*(C, C) .
       
    20 \]
       
    21 Here $LD_k$ is the $k$-th space of the little disks operad, and $Hoch^*(C, C)$ denotes Hochschild
       
    22 cochains.
       
    23 The little disks operad is homotopy equivalent to the fat graph operad
       
    24 \nn{need ref; and need to restrict which fat graphs}, and Hochschild cochains are homotopy equivalent to $A_\infty$ endomorphisms
       
    25 of the blob complex of the interval.
       
    26 \nn{need to make sure we prove this above}.
       
    27 So the 1-dimensional Deligne conjecture can be restated as
       
    28 \begin{eqnarray*}
       
    29 	C_*(FG_k)\otimes \mapinf(\bc^C_*(I), \bc^C_*(I))\otimes\cdots
       
    30 	\otimes \mapinf(\bc^C_*(I), \bc^C_*(I)) & \\
       
    31 	  & \hspace{-5em} \to  \mapinf(\bc^C_*(I), \bc^C_*(I)) .
       
    32 \end{eqnarray*}
       
    33 See Figure \ref{delfig1}.
       
    34 \begin{figure}[!ht]
       
    35 $$\mathfig{.9}{tempkw/delfig1}$$
       
    36 \caption{A fat graph}\label{delfig1}\end{figure}
       
    37 
       
    38 We can think of a fat graph as encoding a sequence of surgeries, starting at the bottommost interval
       
    39 of Figure \ref{delfig1} and ending at the topmost interval.
       
    40 The surgeries correspond to the $k$ bigon-shaped ``holes" in the fat graph.
       
    41 We remove the bottom interval of the bigon and replace it with the top interval.
       
    42 To map this topological operation to an algebraic one, we need, for each hole, element of
       
    43 $\mapinf(\bc^C_*(I_{\text{bottom}}), \bc^C_*(I_{\text{top}}))$.
       
    44 So for each fixed fat graph we have a map
       
    45 \[
       
    46 	 \mapinf(\bc^C_*(I), \bc^C_*(I))\otimes\cdots
       
    47 	\otimes \mapinf(\bc^C_*(I), \bc^C_*(I))  \to  \mapinf(\bc^C_*(I), \bc^C_*(I)) .
       
    48 \]
       
    49 If we deform the fat graph, corresponding to a 1-chain in $C_*(FG_k)$, we get a homotopy
       
    50 between the maps associated to the endpoints of the 1-chain.
       
    51 Similarly, higher-dimensional chains in $C_*(FG_k)$ give rise to higher homotopies.
       
    52 
       
    53 It should now be clear how to generalize this to higher dimensions.
       
    54 In the sequence-of-surgeries description above, we never used the fact that the manifolds
       
    55 involved were 1-dimensional.
       
    56 Thus we can define a $n$-dimensional fat graph to sequence of general surgeries
       
    57 on an $n$-manifold.
       
    58 More specifically, \nn{...}
       
    59 
       
    60 
       
    61 \medskip
       
    62 \hrule\medskip
       
    63 
       
    64 
       
    65 Figure \ref{delfig2}
       
    66 \begin{figure}[!ht]
       
    67 $$\mathfig{.9}{tempkw/delfig2}$$
       
    68 \caption{A fat graph}\label{delfig2}\end{figure}
       
    69 
       
    70 
       
    71 \begin{eqnarray*}
       
    72 	C_*(FG^n_{\overline{M}, \overline{N}})\otimes \mapinf(\bc_*(M_0), \bc_*(N_0))\otimes\cdots\otimes 
       
    73 \mapinf(\bc_*(M_{k-1}), \bc_*(N_{k-1})) & \\
       
    74 	& \hspace{-5em}\to  \mapinf(\bc_*(M_k), \bc_*(N_k))
       
    75 \end{eqnarray*}
       
    76 
       
    77 \medskip
       
    78 \hrule\medskip
     9 
    79 
    10 The $n$-dimensional fat graph operad can be thought of as a sequence of general surgeries
    80 The $n$-dimensional fat graph operad can be thought of as a sequence of general surgeries
    11 of $n$-manifolds
    81 of $n$-manifolds
    12 $R_i \cup A_i \leadsto R_i \cup B_i$ together with mapping cylinders of diffeomorphisms
    82 $R_i \cup A_i \leadsto R_i \cup B_i$ together with mapping cylinders of diffeomorphisms
    13 $f_i: R_i\cup B_i \to R_{i+1}\cup A_{i+1}$.
    83 $f_i: R_i\cup B_i \to R_{i+1}\cup A_{i+1}$.