blob1.tex
changeset 35 0adb47730c7a
parent 34 f46e6ff9f951
child 36 f5e553fbd693
equal deleted inserted replaced
34:f46e6ff9f951 35:0adb47730c7a
   961 \CD{J' \to J''} \tensor A(J') \ar[d]^{\ev_{J' \to J''}} \\
   961 \CD{J' \to J''} \tensor A(J') \ar[d]^{\ev_{J' \to J''}} \\
   962 \CD{J \to J''} \tensor A(J) \ar[r]_{\ev_{J \to J''}} &
   962 \CD{J \to J''} \tensor A(J) \ar[r]_{\ev_{J \to J''}} &
   963 A(J'')
   963 A(J'')
   964 }
   964 }
   965 \end{equation*}
   965 \end{equation*}
   966 commutes. (Here the map $\compose : \CD{J' \to J''} \tensor \CD{J \to J'} \to \CD{J \to J''}$ is a composition: take products of singular chains first, then compose diffeomorphisms.)
   966 commutes. 
       
   967 \kevin{commutes up to homotopy? in the blob case the evaluation map is ambiguous up to homotopy}
       
   968 (Here the map $\compose : \CD{J' \to J''} \tensor \CD{J \to J'} \to \CD{J \to J''}$ is a composition: take products of singular chains first, then compose diffeomorphisms.)
   967 %% or the version for separate pieces of data:
   969 %% or the version for separate pieces of data:
   968 %\item If $\phi$ is a diffeomorphism from $J$ to itself, the maps $\ev_J(\phi, -)$ and $A(\phi)$ are the same.
   970 %\item If $\phi$ is a diffeomorphism from $J$ to itself, the maps $\ev_J(\phi, -)$ and $A(\phi)$ are the same.
   969 %\item The evaluation chain map is associative, in that the diagram
   971 %\item The evaluation chain map is associative, in that the diagram
   970 %\begin{equation*}
   972 %\begin{equation*}
   971 %\xymatrix{
   973 %\xymatrix{
  1074 Next we define the coend
  1076 Next we define the coend
  1075 (or gluing or tensor product or self tensor product, depending on the context)
  1077 (or gluing or tensor product or self tensor product, depending on the context)
  1076 $\gl(M)$ of a topological $A_\infty$ bimodule $M$.
  1078 $\gl(M)$ of a topological $A_\infty$ bimodule $M$.
  1077 $\gl(M)$ is defined to be the universal thing with the following structure.
  1079 $\gl(M)$ is defined to be the universal thing with the following structure.
  1078 
  1080 
  1079 \nn{...}
  1081 \begin{itemize}
  1080 
  1082 \item For each interval $N$ with both endpoints marked, a complex of vector spaces C(N).
  1081 
  1083 \item For each pair of intervals $N,N'$ an evaluation chain map 
  1082 
  1084 $\ev_{N \to N'} : \CD{N \to N'} \tensor C(N) \to C(N')$.
       
  1085 \item For each decomposition of intervals $N = K\cup L$,
       
  1086 a gluing map $\gl_{K,L} : M(K,L) \to C(N)$.
       
  1087 \item The evaluation maps are associative.
       
  1088 \nn{up to homotopy?}
       
  1089 \item Gluing is strictly associative.  
       
  1090 That is, given a decomposition $N = K\cup J\cup L$, the chain maps associated to
       
  1091 $K\du J\du L \to (K\cup J)\du L \to N$ and $K\du J\du L \to K\du (J\cup L) \to N$
       
  1092 agree.
       
  1093 \item the gluing and evaluation maps are compatible.
       
  1094 \end{itemize}
       
  1095 
       
  1096 Bu universal we mean that given any other collection of chain complexes, evaluation maps
       
  1097 and gluing maps, they factor through the universal thing.
       
  1098 \nn{need to say this in more detail, in particular give the properties of the factoring map}
       
  1099 
       
  1100 Given $X$ and $Y\du -Y \sub \bdy X$ as above, the assignment 
       
  1101 $N \mapsto \bc_*(X \cup_{Y\du -Y} (N\times Y)$ clearly has the structure described 
       
  1102 in the above bullet points.
       
  1103 Showing that it is the universal such thing is the content of the gluing theorem proved below.
       
  1104 
       
  1105 The definitions for a topological $A_\infty$-$n$-category are very similar to the above
       
  1106 $n=1$ case.
       
  1107 One replaces intervals with manifolds diffeomorphic to the ball $B^n$.
       
  1108 Marked points are replaced by copies of $B^{n-1}$ in $\bdy B^n$.
       
  1109 
       
  1110 \nn{give examples: $A(J^n) = \bc_*(Z\times J)$ and $A(J^n) = C_*(\Maps(J \to M))$.}
  1083 
  1111 
  1084 \todo{the motivating example $C_*(\maps(X, M))$}
  1112 \todo{the motivating example $C_*(\maps(X, M))$}
  1085 
  1113 
  1086 \todo{higher $n$}
       
  1087 
  1114 
  1088 
  1115 
  1089 \newcommand{\skel}[1]{\operatorname{skeleton}(#1)}
  1116 \newcommand{\skel}[1]{\operatorname{skeleton}(#1)}
  1090 
  1117 
  1091 Given a topological $A_\infty$-category $\cC$, we can construct an `algebraic' $A_\infty$ category $\skel{\cC}$. First, pick your
  1118 Given a topological $A_\infty$-category $\cC$, we can construct an `algebraic' $A_\infty$ category $\skel{\cC}$. First, pick your