pnas/pnas.tex
changeset 589 14b7d867e423
parent 577 9a60488cd2fc
child 590 6de8871d5786
equal deleted inserted replaced
588:805978de8880 589:14b7d867e423
   437 natural with respect to homeomorphisms, and associative with respect to iterated gluings.
   437 natural with respect to homeomorphisms, and associative with respect to iterated gluings.
   438 \end{property}
   438 \end{property}
   439 
   439 
   440 \begin{property}[Contractibility]
   440 \begin{property}[Contractibility]
   441 \label{property:contractibility}%
   441 \label{property:contractibility}%
   442 With field coefficients, the blob complex on an $n$-ball is contractible in the sense 
   442 The blob complex on an $n$-ball is contractible in the sense 
   443 that it is homotopic to its $0$-th homology.
   443 that it is homotopic to its $0$-th homology, and this is just the vector space associated to the ball by the $n$-category.
   444 Moreover, the $0$-th homology of balls can be canonically identified with the vector spaces 
   444 \begin{equation*}
   445 associated by the system of fields $\cF$ to balls.
   445 \xymatrix{\bc_*(B^n;\cC) \ar[r]^(0.4){\iso}_(0.4){\text{qi}} & H_0(\bc_*(B^n;\cC)) \ar[r]^(0.6)\iso & \cC(B^n)}
   446 \begin{equation*}
       
   447 \xymatrix{\bc_*(B^n;\cF) \ar[r]^(0.4){\iso}_(0.4){\text{qi}} & H_0(\bc_*(B^n;\cF)) \ar[r]^(0.6)\iso & A_\cF(B^n)}
       
   448 \end{equation*}
   446 \end{equation*}
   449 \end{property}
   447 \end{property}
   450 
   448 \nn{maybe should say something about the $A_\infty$ case}
   451 \nn{Properties \ref{property:functoriality} will be immediate from the definition given in
   449 
   452 \S \ref{sec:blob-definition}, and we'll recall it at the appropriate point there.
   450 Properties \ref{property:functoriality},  \ref{property:disjoint-union} and \ref{property:gluing-map} are  immediate from the definition. Property \ref{property:contractibility} \todo{}
   453 Properties \ref{property:disjoint-union}, \ref{property:gluing-map} and 
       
   454 \ref{property:contractibility} are established in \S \ref{sec:basic-properties}.}
       
   455 
   451 
   456 \subsection{Specializations}
   452 \subsection{Specializations}
   457 \label{sec:specializations}
   453 \label{sec:specializations}
   458 
   454 
   459 The blob complex has two important special cases.
   455 The blob complex has two important special cases.
   460 
   456 
   461 \begin{thm}[Skein modules]
   457 \begin{thm}[Skein modules]
   462 \label{thm:skein-modules}
   458 \label{thm:skein-modules}
       
   459 \nn{Plain n-categories only?}
   463 The $0$-th blob homology of $X$ is the usual 
   460 The $0$-th blob homology of $X$ is the usual 
   464 (dual) TQFT Hilbert space (a.k.a.\ skein module) associated to $X$
   461 (dual) TQFT Hilbert space (a.k.a.\ skein module) associated to $X$
   465 by $\cF$.
   462 by $\cC$.
   466 \begin{equation*}
   463 \begin{equation*}
   467 H_0(\bc_*(X;\cF)) \iso A_{\cF}(X)
   464 H_0(\bc_*(X;\cC)) \iso A_{\cC}(X)
   468 \end{equation*}
   465 \end{equation*}
   469 \end{thm}
   466 \end{thm}
       
   467 This follows from the fact that the $0$-th homology of a homotopy colimit of \todo{something plain} is the usual colimit, or directly from the explicit description of the blob complex.
   470 
   468 
   471 \begin{thm}[Hochschild homology when $X=S^1$]
   469 \begin{thm}[Hochschild homology when $X=S^1$]
   472 \label{thm:hochschild}
   470 \label{thm:hochschild}
   473 The blob complex for a $1$-category $\cC$ on the circle is
   471 The blob complex for a $1$-category $\cC$ on the circle is
   474 quasi-isomorphic to the Hochschild complex.
   472 quasi-isomorphic to the Hochschild complex.