text/ncat.tex
changeset 410 14e3124a48e8
parent 402 853376c08d76
child 411 98b8559b0b7a
equal deleted inserted replaced
409:291f82fb79b5 410:14e3124a48e8
  1397 This of course depends (functorially)
  1397 This of course depends (functorially)
  1398 on the choice of 1-ball $J$.
  1398 on the choice of 1-ball $J$.
  1399 
  1399 
  1400 We will define a more general self tensor product (categorified coend) below.
  1400 We will define a more general self tensor product (categorified coend) below.
  1401 
  1401 
  1402 %\nn{what about self tensor products /coends ?}
       
  1403 
       
  1404 \nn{maybe ``tensor product" is not the best name?}
       
  1405 
       
  1406 %\nn{start with (less general) tensor products; maybe change this later}
       
  1407 
       
  1408 
       
  1409 
       
  1410 
  1402 
  1411 \subsection{Morphisms of $A_\infty$ $1$-category modules}
  1403 \subsection{Morphisms of $A_\infty$ $1$-category modules}
  1412 \label{ss:module-morphisms}
  1404 \label{ss:module-morphisms}
  1413 
  1405 
  1414 In order to state and prove our version of the higher dimensional Deligne conjecture
  1406 In order to state and prove our version of the higher dimensional Deligne conjecture
  1606 \]
  1598 \]
  1607 constitutes a null homotopy of
  1599 constitutes a null homotopy of
  1608 $g((\bd \olD)\ot -)$ (where the $g((\bd_0 \olD)\ot -)$ part of $g((\bd \olD)\ot -)$
  1600 $g((\bd \olD)\ot -)$ (where the $g((\bd_0 \olD)\ot -)$ part of $g((\bd \olD)\ot -)$
  1609 should be interpreted as above).
  1601 should be interpreted as above).
  1610 
  1602 
  1611 Define a {\it naive morphism} 
  1603 Define a {\it strong morphism} 
  1612 \nn{should consider other names for this}
       
  1613 of modules to be a collection of {\it chain} maps
  1604 of modules to be a collection of {\it chain} maps
  1614 \[
  1605 \[
  1615 	h_K : \cX(K)\to \cY(K)
  1606 	h_K : \cX(K)\to \cY(K)
  1616 \]
  1607 \]
  1617 for each left-marked interval $K$.
  1608 for each left-marked interval $K$.
  1621 	\cX(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_q) \ar[r]^{h_{I_0}\ot \id} 
  1612 	\cX(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_q) \ar[r]^{h_{I_0}\ot \id} 
  1622 							\ar[d]_{\gl} & \cY(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_q) 
  1613 							\ar[d]_{\gl} & \cY(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_q) 
  1623 								\ar[d]^{\gl} \\
  1614 								\ar[d]^{\gl} \\
  1624 	\cX(K) \ar[r]^{h_{K}} & \cY(K)
  1615 	\cX(K) \ar[r]^{h_{K}} & \cY(K)
  1625 } \]
  1616 } \]
  1626 Given such an $h$ we can construct a non-naive morphism $g$, with $\bd g = 0$, as follows.
  1617 Given such an $h$ we can construct a morphism $g$, with $\bd g = 0$, as follows.
  1627 Define $g(\olD\ot - ) = 0$ if the length/degree of $\olD$ is greater than 0.
  1618 Define $g(\olD\ot - ) = 0$ if the length/degree of $\olD$ is greater than 0.
  1628 If $\olD$ consists of the single subdivision $K = I_0\cup\cdots\cup I_q$ then define
  1619 If $\olD$ consists of the single subdivision $K = I_0\cup\cdots\cup I_q$ then define
  1629 \[
  1620 \[
  1630 	g(\olD\ot x\ot \cbar) \deq h_K(\gl(x\ot\cbar)) .
  1621 	g(\olD\ot x\ot \cbar) \deq h_K(\gl(x\ot\cbar)) .
  1631 \]
  1622 \]