text/gluing.tex
changeset 76 16d7f0938baa
parent 72 ed2594ff5870
child 79 8ef65f3bea2b
equal deleted inserted replaced
75:33aaaca22af6 76:16d7f0938baa
   242 
   242 
   243 For the second example, given $X$ and $Y\du -Y \sub \bdy X$, the assignment
   243 For the second example, given $X$ and $Y\du -Y \sub \bdy X$, the assignment
   244 $$N \mapsto \bc_*(X \cup_{Y\du -Y} (N\times Y))$$ clearly gives an object in $\cG{M}$.
   244 $$N \mapsto \bc_*(X \cup_{Y\du -Y} (N\times Y))$$ clearly gives an object in $\cG{M}$.
   245 Showing that it is an initial object is the content of the gluing theorem proved below.
   245 Showing that it is an initial object is the content of the gluing theorem proved below.
   246 
   246 
   247 The definitions for a topological $A_\infty$-$n$-category are very similar to the above
       
   248 $n=1$ case.
       
   249 One replaces intervals with manifolds diffeomorphic to the ball $B^n$.
       
   250 Marked points are replaced by copies of $B^{n-1}$ in $\bdy B^n$.
       
   251 
       
   252 \nn{give examples: $A(J^n) = \bc_*(Z\times J)$ and $A(J^n) = C_*(\Maps(J \to M))$.}
       
   253 
       
   254 \todo{the motivating example $C_*(\Maps(X, M))$}
       
   255 
       
   256 
       
   257 
       
   258 \newcommand{\skel}[1]{\operatorname{skeleton}(#1)}
       
   259 
       
   260 Given a topological $A_\infty$-category $\cC$, we can construct an `algebraic' $A_\infty$ category $\skel{\cC}$. First, pick your
       
   261 favorite diffeomorphism $\phi: I \cup I \to I$.
       
   262 \begin{defn}
       
   263 We'll write $\skel{\cC} = (A, m_k)$. Define $A = \cC(I)$, and $m_2 : A \tensor A \to A$ by
       
   264 \begin{equation*}
       
   265 m_2 \cC(I) \tensor \cC(I) \xrightarrow{\gl_{I,I}} \cC(I \cup I) \xrightarrow{\cC(\phi)} \cC(I).
       
   266 \end{equation*}
       
   267 Next, we define all the `higher associators' $m_k$ by
       
   268 \todo{}
       
   269 \end{defn}
       
   270 
       
   271 Give an `algebraic' $A_\infty$ category $(A, m_k)$, we can construct a topological $A_\infty$-category, which we call $\bc_*^A$. You should
       
   272 think of this as a generalisation of the blob complex, although the construction we give will \emph{not} specialise to exactly the usual definition
       
   273 in the case the $A$ is actually an associative category.
       
   274 
       
   275 We'll first define $\cT_{k,n}$ to be the set of planar forests consisting of $n-k$ trees, with a total of $n$ leaves. Thus
       
   276 \todo{$\cT_{0,n}$ has 1 element, with $n$ vertical lines, $\cT_{1,n}$ has $n-1$ elements, each with a single trivalent vertex, $\cT_{2,n}$ etc...}
       
   277 \begin{align*}
       
   278 \end{align*}
       
   279 
       
   280 \begin{defn}
       
   281 The topological $A_\infty$ category $\bc_*^A$ is doubly graded, by `blob degree' and `internal degree'. We'll write $\bc_k^A$ for the blob degree $k$ piece.
       
   282 The homological degree of an element $a \in \bc_*^A(J)$
       
   283 is the sum of the blob degree and the internal degree.
       
   284 
       
   285 We first define $\bc_0^A(J)$ as a vector space by
       
   286 \begin{equation*}
       
   287 \bc_0^A(J) = \DirectSum_{\substack{\{J_i\}_{i=1}^n \\ \mathclap{\bigcup_i J_i = J}}} \Tensor_{i=1}^n (\CD{J_i \to I} \tensor A).
       
   288 \end{equation*}
       
   289 (That is, for each division of $J$ into finitely many subintervals,
       
   290 we have the tensor product of chains of diffeomorphisms from each subinterval to the standard interval,
       
   291 and a copy of $A$ for each subinterval.)
       
   292 The internal degree of an element $(f_1 \tensor a_1, \ldots, f_n \tensor a_n)$ is the sum of the dimensions of the singular chains
       
   293 plus the sum of the homological degrees of the elements of $A$.
       
   294 The differential is defined just by the graded Leibniz rule and the differentials on $\CD{J_i \to I}$ and on $A$.
       
   295 
       
   296 Next,
       
   297 \begin{equation*}
       
   298 \bc_1^A(J) = \DirectSum_{\substack{\{J_i\}_{i=1}^n \\ \mathclap{\bigcup_i J_i = J}}} \DirectSum_{T \in \cT_{1,n}} \Tensor_{i=1}^n (\CD{J_i \to I} \tensor A).
       
   299 \end{equation*}
       
   300 \end{defn}
       
   301 
       
   302 \begin{figure}[!ht]
       
   303 \begin{equation*}
       
   304 \mathfig{0.7}{associahedron/A4-vertices}
       
   305 \end{equation*}
       
   306 \caption{The vertices of the $k$-dimensional associahedron are indexed by binary trees on $k+2$ leaves.}
       
   307 \label{fig:A4-vertices}
       
   308 \end{figure}
       
   309 
       
   310 \begin{figure}[!ht]
       
   311 \begin{equation*}
       
   312 \mathfig{0.7}{associahedron/A4-faces}
       
   313 \end{equation*}
       
   314 \caption{The faces of the $k$-dimensional associahedron are indexed by trees with $2$ vertices on $k+2$ leaves.}
       
   315 \label{fig:A4-vertices}
       
   316 \end{figure}
       
   317 
       
   318 \newcommand{\tm}{\widetilde{m}}
       
   319 
       
   320 Let $\tm_1(a) = a$.
       
   321 
       
   322 We now define $\bdy(\tm_k(a_1 \tensor \cdots \tensor a_k))$, first giving an opaque formula, then explaining the combinatorics behind it.
       
   323 \begin{align}
       
   324 \notag \bdy(\tm_k(a_1 & \tensor \cdots \tensor a_k)) = \\
       
   325 \label{eq:bdy-tm-k-1}   & \phantom{+} \sum_{\ell'=0}^{k-1} (-1)^{\abs{\tm_k}+\sum_{j=1}^{\ell'} \abs{a_j}} \tm_k(a_1 \tensor \cdots \tensor \bdy a_{\ell'+1} \tensor \cdots \tensor a_k) + \\
       
   326 \label{eq:bdy-tm-k-2}   &          +  \sum_{\ell=1}^{k-1} \tm_{\ell}(a_1 \tensor \cdots \tensor a_{\ell}) \tensor \tm_{k-\ell}(a_{\ell+1} \tensor \cdots \tensor a_k) + \\
       
   327 \label{eq:bdy-tm-k-3}   &          +  \sum_{\ell=1}^{k-1} \sum_{\ell'=0}^{l-1} (-1)^{\abs{\tm_k}+\sum_{j=1}^{\ell'} \abs{a_j}} \tm_{\ell}(a_1 \tensor \cdots \tensor m_{k-\ell + 1}(a_{\ell' + 1} \tensor \cdots \tensor a_{\ell' + k - \ell + 1}) \tensor \cdots \tensor a_k)
       
   328 \end{align}
       
   329 The first set of terms in $\bdy(\tm_k(a_1 \tensor \cdots \tensor a_k))$ just have $\bdy$ acting on each argument $a_i$.
       
   330 The terms appearing in \eqref{eq:bdy-tm-k-2} and \eqref{eq:bdy-tm-k-3} are indexed by trees with $2$ vertices on $k+1$ leaves.
       
   331 Note here that we have one more leaf than there arguments of $\tm_k$.
       
   332 (See Figure \ref{fig:A4-vertices}, in which the rightmost branches are helpfully drawn in red.)
       
   333 We will treat the vertices which involve a rightmost (red) branch differently from the vertices which only involve the first $k$ leaves.
       
   334 The terms in \eqref{eq:bdy-tm-k-2} arise in the cases in which both
       
   335 vertices are rightmost, and the corresponding term in $\bdy(\tm_k(a_1 \tensor \cdots \tensor a_k))$ is a tensor product of the form
       
   336 $$\tm_{\ell}(a_1 \tensor \cdots \tensor a_{\ell}) \tensor \tm_{k-\ell}(a_{\ell+1} \tensor \cdots \tensor a_k)$$
       
   337 where $\ell + 1$ and $k - \ell + 1$ are the number of branches entering the vertices.
       
   338 If only one vertex is rightmost, we get the term $$\tm_{\ell}(a_1 \tensor \cdots \tensor m_{k-\ell+1}(a_{\ell' + 1} \tensor \cdots \tensor a_{\ell' + k - \ell}) \tensor \cdots \tensor a_k)$$
       
   339 in \eqref{eq:bdy-tm-k-3},
       
   340 where again $\ell + 1$ is the number of branches entering the rightmost vertex, $k-\ell+1$ is the number of branches entering the other vertex, and $\ell'$ is the number of edges meeting the rightmost vertex which start to the left of the other vertex.
       
   341 For example, we have
       
   342 \begin{align*}
       
   343 \bdy(\tm_2(a \tensor b)) & = \left(\tm_2(\bdy a \tensor b) + (-1)^{\abs{a}} \tm_2(a \tensor \bdy b)\right) + \\
       
   344                          & \qquad - a \tensor b + m_2(a \tensor b) \\
       
   345 \bdy(\tm_3(a \tensor b \tensor c)) & = \left(- \tm_3(\bdy a \tensor b \tensor c) + (-1)^{\abs{a} + 1} \tm_3(a \tensor \bdy b \tensor c) + (-1)^{\abs{a} + \abs{b} + 1} \tm_3(a \tensor b \tensor \bdy c)\right) + \\
       
   346                                    & \qquad + \left(- \tm_2(a \tensor b) \tensor c + a \tensor \tm_2(b \tensor c)\right) + \\
       
   347                                    & \qquad + \left(- \tm_2(m_2(a \tensor b) \tensor c) + \tm_2(a, m_2(b \tensor c)) + m_3(a \tensor b \tensor c)\right)
       
   348 \end{align*}
       
   349 \begin{align*}
       
   350 \bdy(& \tm_4(a \tensor b \tensor c \tensor d)) = \left(\tm_4(\bdy a \tensor b \tensor c \tensor d) + \cdots + \tm_4(a \tensor b \tensor c \tensor \bdy d)\right) + \\
       
   351                                              & + \left(\tm_3(a \tensor b \tensor c) \tensor d + \tm_2(a \tensor b) \tensor \tm_2(c \tensor d) + a \tensor \tm_3(b \tensor c \tensor d)\right) + \\
       
   352                                              & + \left(\tm_3(m_2(a \tensor b) \tensor c \tensor d) + \tm_3(a \tensor m_2(b \tensor c) \tensor d) + \tm_3(a \tensor b \tensor m_2(c \tensor d))\right. + \\
       
   353                                              & + \left.\tm_2(m_3(a \tensor b \tensor c) \tensor d) + \tm_2(a \tensor m_3(b \tensor c \tensor d)) + m_4(a \tensor b \tensor c \tensor d)\right) \\
       
   354 \end{align*}
       
   355 See Figure \ref{fig:A4-terms}, comparing it against Figure \ref{fig:A4-faces}, to see this illustrated in the case $k=4$. There the $3$ faces closest
       
   356 to the top of the diagram have two rightmost vertices, while the other $6$ faces have only one.
       
   357 
       
   358 \begin{figure}[!ht]
       
   359 \begin{equation*}
       
   360 \mathfig{1.0}{associahedron/A4-terms}
       
   361 \end{equation*}
       
   362 \caption{The terms of $\bdy(\tm_k(a_1 \tensor \cdots \tensor a_k))$ correspond to the faces of the $k-1$ dimensional associahedron.}
       
   363 \label{fig:A4-terms}
       
   364 \end{figure}
       
   365 
       
   366 \begin{lem}
       
   367 This definition actually results in a chain complex, that is $\bdy^2 = 0$.
       
   368 \end{lem}
       
   369 \begin{proof}
       
   370 \newcommand{\T}{\text{---}}
       
   371 \newcommand{\ssum}[1]{{\sum}^{(#1)}}
       
   372 For the duration of this proof, inside a summation over variables $l_1, \ldots, l_m$, an expression with $m$ dashes will be interpreted
       
   373 by replacing each dash with contiguous factors from $a_1 \tensor \cdots \tensor a_k$, so the first dash takes the first $l_1$ factors, the second
       
   374 takes the next $l_2$ factors, and so on. Further, we'll write $\ssum{m}$ for $\sum_{\sum_{i=1}^m l_i = k}$.
       
   375 In this notation, the formula for the differential becomes
       
   376 \begin{align}
       
   377 \notag
       
   378 \bdy \tm(\T) & = \ssum{2} \tm(\T) \tensor \tm(\T) \times \sigma_{0;l_1,l_2} + \ssum{3} \tm(\T \tensor m(\T) \tensor \T) \times \tau_{0;l_1,l_2,l_3} \\
       
   379 \intertext{and we calculate}
       
   380 \notag
       
   381 \bdy^2 \tm(\T) & = \ssum{2} \bdy \tm(\T) \tensor \tm(\T) \times \sigma_{0;l_1,l_2} \\
       
   382 \notag         & \qquad + \ssum{2} \tm(\T) \tensor \bdy \tm(\T) \times \sigma_{0;l_1,l_2} \\
       
   383 \notag         & \qquad + \ssum{3} \bdy \tm(\T \tensor m(\T) \tensor \T) \times \tau_{0;l_1,l_2,l_3} \\
       
   384 \label{eq:d21} & = \ssum{3} \tm(\T) \tensor \tm(\T) \tensor \tm(\T) \times \sigma_{0;l_1+l_2,l_3} \sigma_{0;l_1,l_2} \\
       
   385 \label{eq:d22} & \qquad + \ssum{4} \tm(\T \tensor m(\T) \tensor \T) \tensor \tm(\T) \times \sigma_{0;l_1+l_2+l_3,l_4} \tau_{0;l_1,l_2,l_3} \\
       
   386 \label{eq:d23} & \qquad + \ssum{3} \tm(\T) \tensor \tm(\T) \tensor \tm(\T) \times \sigma_{0;l_1,l_2+l_3} \sigma_{l_1;l_2,l_3} \\
       
   387 \label{eq:d24} & \qquad + \ssum{4} \tm(\T) \tensor \tm(\T \tensor m(\T) \tensor \T) \times \sigma_{0;l_1,l_2+l_3+l_4} \tau_{l_1;l_2,l_3,l_4} \\
       
   388 \label{eq:d25} & \qquad + \ssum{4} \tm(\T \tensor m(\T) \tensor \T) \tensor \tm(\T) \times \tau_{0;l_1,l_2,l_3+l_4} ??? \\
       
   389 \label{eq:d26} & \qquad + \ssum{4} \tm(\T) \tensor \tm(\T \tensor m(\T) \tensor \T) \times \tau_{0;l_1+l_2,l_3,l_4} \sigma_{0;l_1,l_2} \\
       
   390 \label{eq:d27} & \qquad + \ssum{5} \tm(\T \tensor m(\T) \tensor \T \tensor m(\T) \tensor \T) \times \tau_{0;l_1+l_2+l_3,l_4,l_5} \tau_{0;l_1,l_2,l_3}  \\
       
   391 \label{eq:d28} & \qquad + \ssum{5} \tm(\T \tensor m(\T \tensor m(\T) \tensor \T) \tensor \T) \times \tau_{0;l_1,l_2+l_3+l_4,l_5} ??? \\
       
   392 \label{eq:d29} & \qquad + \ssum{5} \tm(\T \tensor m(\T) \tensor \T \tensor m(\T) \tensor \T) \times \tau_{0;l_1,l_2,l_3+l_4+l_5} ???
       
   393 \end{align}
       
   394 Now, we see the the expressions on the right hand side of line \eqref{eq:d21} and those on \eqref{eq:d23} cancel. Similarly, line \eqref{eq:d22} cancels
       
   395 with \eqref{eq:d25}, \eqref{eq:d24} with \eqref{eq:d26}, and \eqref{eq:d27} with \eqref{eq:d29}. Finally, we need to see that \eqref{eq:d28} gives $0$,
       
   396 by the usual relations between the $m_k$ in an $A_\infty$ algebra.
       
   397 \end{proof}
       
   398 
   247 
   399 \nn{Need to let the input $n$-category $C$ be a graded thing (e.g. DG
   248 \nn{Need to let the input $n$-category $C$ be a graded thing (e.g. DG
   400 $n$-category or $A_\infty$ $n$-category). DG $n$-category case is pretty
   249 $n$-category or $A_\infty$ $n$-category). DG $n$-category case is pretty
   401 easy, I think, so maybe it should be done earlier??}
   250 easy, I think, so maybe it should be done earlier??}
   402 
   251