text/ncat.tex
changeset 190 16efb5711c6f
parent 189 a3631a999462
child 191 8c2c330e87f2
equal deleted inserted replaced
189:a3631a999462 190:16efb5711c6f
     2 
     2 
     3 \def\xxpar#1#2{\smallskip\noindent{\bf #1} {\it #2} \smallskip}
     3 \def\xxpar#1#2{\smallskip\noindent{\bf #1} {\it #2} \smallskip}
     4 
     4 
     5 \section{$n$-categories}
     5 \section{$n$-categories}
     6 \label{sec:ncats}
     6 \label{sec:ncats}
     7 
       
     8 %In order to make further progress establishing properties of the blob complex,
       
     9 %we need a definition of $A_\infty$ $n$-category that is adapted to our needs.
       
    10 %(Even in the case $n=1$, we need the new definition given below.)
       
    11 %It turns out that the $A_\infty$ $n$-category definition and the plain $n$-category
       
    12 %definition are mostly the same, so we give a new definition of plain
       
    13 %$n$-categories too.
       
    14 %We also define modules and tensor products for both plain and $A_\infty$ $n$-categories.
       
    15 
       
    16 
     7 
    17 \subsection{Definition of $n$-categories}
     8 \subsection{Definition of $n$-categories}
    18 
     9 
    19 Before proceeding, we need more appropriate definitions of $n$-categories, 
    10 Before proceeding, we need more appropriate definitions of $n$-categories, 
    20 $A_\infty$ $n$-categories, modules for these, and tensor products of these modules.
    11 $A_\infty$ $n$-categories, modules for these, and tensor products of these modules.
   327 	a & \mapsto & s_{Y,J}(a \cup ((a|_Y)\times J)) .
   318 	a & \mapsto & s_{Y,J}(a \cup ((a|_Y)\times J)) .
   328 \end{eqnarray*}
   319 \end{eqnarray*}
   329 (See Figure \ref{glue-collar}.)
   320 (See Figure \ref{glue-collar}.)
   330 \begin{figure}[!ht]
   321 \begin{figure}[!ht]
   331 \begin{equation*}
   322 \begin{equation*}
   332 \mathfig{.9}{tempkw/blah10}
   323 \begin{tikzpicture}
       
   324 \def\rad{1}
       
   325 \def\srad{0.75}
       
   326 \def\gap{4.5}
       
   327 \foreach \i in {0, 1, 2} {
       
   328 	\node(\i) at ($\i*(\gap,0)$) [draw, circle through = {($\i*(\gap,0)+(\rad,0)$)}] {};
       
   329 	\node(\i-small) at (\i.east) [circle through={($(\i.east)+(\srad,0)$)}] {};
       
   330 	\foreach \n in {1,2} {
       
   331 		\fill (intersection \n of \i-small and \i) node(\i-intersection-\n) {} circle (2pt);
       
   332 	}
       
   333 }
       
   334 
       
   335 \begin{scope}[decoration={brace,amplitude=10,aspect=0.5}]
       
   336 	\draw[decorate] (0-intersection-1.east) -- (0-intersection-2.east);
       
   337 \end{scope}
       
   338 \node[right=1mm] at (0.east) {$a$};
       
   339 \draw[->] ($(0.east)+(0.75,0)$) -- ($(1.west)+(-0.2,0)$);
       
   340 
       
   341 \draw (1-small)  circle (\srad);
       
   342 \foreach \theta in {90, 72, ..., -90} {
       
   343 	\draw[blue] (1) -- ($(1)+(\rad,0)+(\theta:\srad)$);
       
   344 }
       
   345 \filldraw[fill=white] (1) circle (\rad);
       
   346 \foreach \n in {1,2} {
       
   347 	\fill (intersection \n of 1-small and 1) circle (2pt);
       
   348 }
       
   349 \node[below] at (1-small.south) {$a \times J$};
       
   350 \draw[->] ($(1.east)+(1,0)$) -- ($(2.west)+(-0.2,0)$);
       
   351 
       
   352 \begin{scope}
       
   353 \path[clip] (2) circle (\rad);
       
   354 \draw[clip] (2.east) circle (\srad);
       
   355 \foreach \y in {1, 0.86, ..., -1} {
       
   356 	\draw[blue] ($(2)+(-1,\y) $)-- ($(2)+(1,\y)$);
       
   357 }
       
   358 \end{scope}
       
   359 \end{tikzpicture}
       
   360 \end{equation*}
       
   361 \begin{equation*}
       
   362 \xymatrix@C+2cm{\cC(X) \ar[r]^(0.45){\text{glue}} & \cC(X \cup \text{collar}) \ar[r]^(0.55){\text{homeo}} & \cC(X)}
   333 \end{equation*}
   363 \end{equation*}
   334 
   364 
   335 \caption{Extended homeomorphism.}\label{glue-collar}\end{figure}
   365 \caption{Extended homeomorphism.}\label{glue-collar}\end{figure}
   336 We say that $\psi_{Y,J}$ is {\it extended isotopic} to the identity map.
   366 We say that $\psi_{Y,J}$ is {\it extended isotopic} to the identity map.
   337 \nn{bad terminology; fix it later}
   367 \nn{bad terminology; fix it later}
   343 It can be thought of as the action of the inverse of
   373 It can be thought of as the action of the inverse of
   344 a map which projects a collar neighborhood of $Y$ onto $Y$.
   374 a map which projects a collar neighborhood of $Y$ onto $Y$.
   345 
   375 
   346 The revised axiom is
   376 The revised axiom is
   347 
   377 
   348 \begin{axiom}[Extended isotopy invariance in dimension $n$]
   378 \stepcounter{axiom}
       
   379 \begin{axiom-numbered}{\arabic{axiom}a}{Extended isotopy invariance in dimension $n$}
   349 \label{axiom:extended-isotopies}
   380 \label{axiom:extended-isotopies}
   350 Let $X$ be an $n$-ball and $f: X\to X$ be a homeomorphism which restricts
   381 Let $X$ be an $n$-ball and $f: X\to X$ be a homeomorphism which restricts
   351 to the identity on $\bd X$ and is extended isotopic (rel boundary) to the identity.
   382 to the identity on $\bd X$ and is extended isotopic (rel boundary) to the identity.
   352 Then $f$ acts trivially on $\cC(X)$.
   383 Then $f$ acts trivially on $\cC(X)$.
   353 \end{axiom}
   384 \end{axiom-numbered}
   354 
   385 
   355 \nn{need to rephrase this, since extended isotopies don't correspond to homeomorphisms.}
   386 \nn{need to rephrase this, since extended isotopies don't correspond to homeomorphisms.}
   356 
   387 
   357 \smallskip
   388 \smallskip
   358 
   389 
   359 For $A_\infty$ $n$-categories, we replace
   390 For $A_\infty$ $n$-categories, we replace
   360 isotopy invariance with the requirement that families of homeomorphisms act.
   391 isotopy invariance with the requirement that families of homeomorphisms act.
   361 For the moment, assume that our $n$-morphisms are enriched over chain complexes.
   392 For the moment, assume that our $n$-morphisms are enriched over chain complexes.
   362 
   393 
   363 \begin{axiom}[Families of homeomorphisms act in dimension $n$]
   394 \begin{axiom-numbered}{\arabic{axiom}b}{Families of homeomorphisms act in dimension $n$}
   364 For each $n$-ball $X$ and each $c\in \cC(\bd X)$ we have a map of chain complexes
   395 For each $n$-ball $X$ and each $c\in \cC(\bd X)$ we have a map of chain complexes
   365 \[
   396 \[
   366 	C_*(\Homeo_\bd(X))\ot \cC(X; c) \to \cC(X; c) .
   397 	C_*(\Homeo_\bd(X))\ot \cC(X; c) \to \cC(X; c) .
   367 \]
   398 \]
   368 Here $C_*$ means singular chains and $\Homeo_\bd(X)$ is the space of homeomorphisms of $X$
   399 Here $C_*$ means singular chains and $\Homeo_\bd(X)$ is the space of homeomorphisms of $X$
   370 These action maps are required to be associative up to homotopy
   401 These action maps are required to be associative up to homotopy
   371 \nn{iterated homotopy?}, and also compatible with composition (gluing) in the sense that
   402 \nn{iterated homotopy?}, and also compatible with composition (gluing) in the sense that
   372 a diagram like the one in Proposition \ref{CDprop} commutes.
   403 a diagram like the one in Proposition \ref{CDprop} commutes.
   373 \nn{repeat diagram here?}
   404 \nn{repeat diagram here?}
   374 \nn{restate this with $\Homeo(X\to X')$?  what about boundary fixing property?}
   405 \nn{restate this with $\Homeo(X\to X')$?  what about boundary fixing property?}
   375 \end{axiom}
   406 \end{axiom-numbered}
   376 
   407 
   377 We should strengthen the above axiom to apply to families of extended homeomorphisms.
   408 We should strengthen the above axiom to apply to families of extended homeomorphisms.
   378 To do this we need to explain how extended homeomorphisms form a topological space.
   409 To do this we need to explain how extended homeomorphisms form a topological space.
   379 Roughly, the set of $n{-}1$-balls in the boundary of an $n$-ball has a natural topology,
   410 Roughly, the set of $n{-}1$-balls in the boundary of an $n$-ball has a natural topology,
   380 and we can replace the class of all intervals $J$ with intervals contained in $\r$.
   411 and we can replace the class of all intervals $J$ with intervals contained in $\r$.
   410 %The universal (colimit) construction becomes our generalized definition of blob homology.
   441 %The universal (colimit) construction becomes our generalized definition of blob homology.
   411 %Need to explain how it relates to the old definition.}
   442 %Need to explain how it relates to the old definition.}
   412 
   443 
   413 \medskip
   444 \medskip
   414 
   445 
       
   446 \subsection{Examples of $n$-categories}
       
   447 
   415 \nn{these examples need to be fleshed out a bit more}
   448 \nn{these examples need to be fleshed out a bit more}
   416 
   449 
   417 Examples of plain $n$-categories:
   450 We know describe several classes of examples of $n$-categories satisfying our axioms.
   418 \begin{itemize}
   451 
   419 
   452 \begin{example}{Maps to a space}
   420 \item Let $F$ be a closed $m$-manifold (e.g.\ a point).
   453 \label{ex:maps-to-a-space}%
   421 Let $T$ be a topological space.
   454 Fix $F$ a closed $m$-manifold (keep in mind the case where $F$ is a point). Fix a `target space' $T$, any topological space.
   422 For $X$ a $k$-ball or $k$-sphere with $k < n$, define $\cC(X)$ to be the set of 
   455 For $X$ a $k$-ball or $k$-sphere with $k < n$, define $\cC(X)$ to be the set of 
   423 all maps from $X\times F$ to $T$.
   456 all maps from $X\times F$ to $T$.
   424 For $X$ an $n$-ball define $\cC(X)$ to be maps from $X\times F$ to $T$ modulo
   457 For $X$ an $n$-ball define $\cC(X)$ to be maps from $X\times F$ to $T$ modulo
   425 homotopies fixed on $\bd X \times F$.
   458 homotopies fixed on $\bd X \times F$.
   426 (Note that homotopy invariance implies isotopy invariance.)
   459 (Note that homotopy invariance implies isotopy invariance.)
   427 For $a\in \cC(X)$ define the product morphism $a\times D \in \cC(X\times D)$ to
   460 For $a\in \cC(X)$ define the product morphism $a\times D \in \cC(X\times D)$ to
   428 be $a\circ\pi_X$, where $\pi_X : X\times D \to X$ is the projection.
   461 be $a\circ\pi_X$, where $\pi_X : X\times D \to X$ is the projection.
   429 
   462 \end{example}
   430 \item We can linearize the above example as follows.
   463 
       
   464 \begin{example}{Linearized, twisted, maps to a space}
       
   465 \label{ex:linearized-maps-to-a-space}%
       
   466 We can linearize the above example as follows.
   431 Let $\alpha$ be an $(n{+}m{+}1)$-cocycle on $T$ with values in a ring $R$
   467 Let $\alpha$ be an $(n{+}m{+}1)$-cocycle on $T$ with values in a ring $R$
   432 (e.g.\ the trivial cocycle).
   468 (e.g.\ the trivial cocycle).
   433 For $X$ of dimension less than $n$ define $\cC(X)$ as before.
   469 For $X$ of dimension less than $n$ define $\cC(X)$ as before.
   434 For $X$ an $n$-ball and $c\in \cC(\bd X)$ define $\cC(X; c)$ to be
   470 For $X$ an $n$-ball and $c\in \cC(\bd X)$ define $\cC(X; c)$ to be
   435 the $R$-module of finite linear combinations of maps from $X\times F$ to $T$,
   471 the $R$-module of finite linear combinations of maps from $X\times F$ to $T$,
   436 modulo the relation that if $a$ is homotopic to $b$ (rel boundary) via a homotopy
   472 modulo the relation that if $a$ is homotopic to $b$ (rel boundary) via a homotopy
   437 $h: X\times F\times I \to T$, then $a \sim \alpha(h)b$.
   473 $h: X\times F\times I \to T$, then $a \sim \alpha(h)b$.
   438 \nn{need to say something about fundamental classes, or choose $\alpha$ carefully}
   474 \nn{need to say something about fundamental classes, or choose $\alpha$ carefully}
       
   475 \end{example}
       
   476 
       
   477 \begin{itemize}
       
   478 
       
   479 \item \nn{Continue converting these into examples}
   439 
   480 
   440 \item Given a traditional $n$-category $C$ (with strong duality etc.),
   481 \item Given a traditional $n$-category $C$ (with strong duality etc.),
   441 define $\cC(X)$ (with $\dim(X) < n$) 
   482 define $\cC(X)$ (with $\dim(X) < n$) 
   442 to be the set of all $C$-labeled sub cell complexes of $X$.
   483 to be the set of all $C$-labeled sub cell complexes of $X$.
   443 (See Subsection \ref{sec:fields}.)
   484 (See Subsection \ref{sec:fields}.)
   471 \item \nn{sphere modules; ref to below}
   512 \item \nn{sphere modules; ref to below}
   472 
   513 
   473 \end{itemize}
   514 \end{itemize}
   474 
   515 
   475 
   516 
   476 Examples of $A_\infty$ $n$-categories:
   517 We have two main examples of $A_\infty$ $n$-categories, coming from maps to a target space and from the blob complex.
   477 \begin{itemize}
   518 
   478 
   519 \begin{example}{Chains of maps to a space}
   479 \item Same as in example \nn{xxxx} above (fiber $F$, target space $T$),
   520 We can modify Example \ref{ex:maps-to-a-space} above by defining $\cC(X; c)$ for an $n$-ball $X$  to be the chain complex 
   480 but we define, for an $n$-ball $X$, $\cC(X; c)$ to be the chain complex 
   521 $C_*(\Maps_c(X\times F \to T))$, where $\Maps_c$ denotes continuous maps restricting to $c$ on the boundary,
   481 $C_*(\Maps_c(X\times F))$, where $\Maps_c$ denotes continuous maps restricting to $c$ on the boundary,
       
   482 and $C_*$ denotes singular chains.
   522 and $C_*$ denotes singular chains.
   483 
   523 \end{example}
   484 \item
   524 
       
   525 \begin{example}{Blob complexes of balls (with a fiber)}
       
   526 Fix an $m$-dimensional manifold $F$.
   485 Given a plain $n$-category $C$, 
   527 Given a plain $n$-category $C$, 
   486 define $\cC(X; c) = \bc^C_*(X\times F; c)$, where $X$ is an $n$-ball
   528 when $X$ is a $k$-ball or $k$-sphere, with $k<n-m$, define $\cC(X) = C(X)$. When $X$ is an $(n-m)$-ball,
   487 and $\bc^C_*$ denotes the blob complex based on $C$.
   529 define $\cC(X; c) = \bc^C_*(X\times F; c)$
   488 
   530 where $\bc^C_*$ denotes the blob complex based on $C$.
   489 \item \nn{should add $\infty$ version of bordism $n$-cat}
   531 \end{example}
   490 
   532 
   491 \end{itemize}
   533 \begin{defn}
       
   534 \nn{should add $\infty$ version of bordism $n$-cat}
       
   535 \end{defn}
   492 
   536 
   493 
   537 
   494 
   538 
   495 
   539 
   496 
   540