text/ncat.tex
changeset 261 1c408505c9f5
parent 260 971234b03c4a
child 262 3278eafef668
child 263 fc3e10aa0d40
equal deleted inserted replaced
260:971234b03c4a 261:1c408505c9f5
  1125 For $n=1$ this definition is a homotopy colimit indexed by subdivisions of a fixed interval $J$
  1125 For $n=1$ this definition is a homotopy colimit indexed by subdivisions of a fixed interval $J$
  1126 and their gluings (antirefinements).
  1126 and their gluings (antirefinements).
  1127 (The tensor product will depend (functorially) on the choice of $J$.)
  1127 (The tensor product will depend (functorially) on the choice of $J$.)
  1128 To a subdivision 
  1128 To a subdivision 
  1129 \[
  1129 \[
  1130 	J = I_1\cup \cdots\cup I_m
  1130 	J = I_1\cup \cdots\cup I_p
  1131 \]
  1131 \]
  1132 we associate the chain complex
  1132 we associate the chain complex
  1133 \[
  1133 \[
  1134 	\cM(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_{m-1})\ot\cN(I_m) .
  1134 	\cM(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_{m-1})\ot\cN(I_m) .
  1135 \]
  1135 \]
  1182 It's easy to verify the remaining module axioms.
  1182 It's easy to verify the remaining module axioms.
  1183 
  1183 
  1184 Now we reinterpret $(\cM_\cC\ot {_\cC\cN})^*$
  1184 Now we reinterpret $(\cM_\cC\ot {_\cC\cN})^*$
  1185 as some sort of morphism $\cM_\cC \to (_\cC\cN)^*$.
  1185 as some sort of morphism $\cM_\cC \to (_\cC\cN)^*$.
  1186 Let $f\in (\cM_\cC\ot {_\cC\cN})^*$.
  1186 Let $f\in (\cM_\cC\ot {_\cC\cN})^*$.
  1187 Let $\olD$ be a chain of subdivisions with $D_0 = [J = I_1\cup\cdots\cup I_m]$, and let
  1187 Let $\olD = (D_0\cdots D_l)$ be a chain of subdivisions with $D_0 = [J = I_1\cup\cdots\cup I_m]$.
  1188 $m\ot \cbar \in \cM(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_{m-1})$.
  1188 Recall that $(_\cC\cN)^*(I_1\cup\cdots\cup I_{p-1}) = (_\cC\cN(I_p))^*$.
  1189 
  1189 Then for each such $\olD$ we have a degree $l$ map
  1190 
  1190 \begin{eqnarray*}
  1191 
  1191 	\cM(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_{p-1}) &\to& (_\cC\cN)^*(I_1\cup\cdots\cup I_{p-1}) \\
  1192 
  1192 	m\ot \cbar &\mapsto& [n\mapsto f(\olD\ot m\ot \cbar\ot n)]
  1193 
  1193 \end{eqnarray*}
       
  1194 
       
  1195 We are almost ready to give the definition of morphisms between arbitrary modules
       
  1196 $\cX_\cC$ and $\cY_\cC$.
       
  1197 Note that the rightmost interval $I_m$ does not appear above, except implicitly in $\olD$.
       
  1198 To fix this, we define subdivisions are antirefinements of left-marked intervals.
       
  1199 Subdivisions are just the obvious thing, but antirefinements are defined to mimic
       
  1200 the above antirefinements of the fixed interval $J$, but with the rightmost subinterval $I_m$ always
       
  1201 omitted.
       
  1202 More specifically, $D\to D'$ is an antirefinement if $D'$ is obtained from $D$ by 
       
  1203 gluing subintervals together and/or omitting some of the rightmost subintervals.
       
  1204 (See Figure xxxx.)
       
  1205 
       
  1206 Now we define the chain complex $\hom_\cC(\cX_\cC \to \cY_\cC)$.
       
  1207 The underlying vector space is 
       
  1208 \[
       
  1209 	\prod_l \prod_{\olD} \hom[l]\left(
       
  1210 				\cX(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_{p-1}) \to 
       
  1211 							\cY(I_1\cup\cdots\cup I_{p-1}) \rule{0pt}{1.1em}\right) ,
       
  1212 \]
       
  1213 where, as usual $\olD = (D_0\cdots D_l)$ is a chain of antirefinements
       
  1214 (but now of left-marked intervals) and $D_0$ is the subdivision $I_1\cup\cdots\cup I_{p-1}$.
       
  1215 $\hom[l](- \to -)$ means graded linear maps of degree $l$.
       
  1216 
       
  1217 \nn{small issue (pun intended): 
       
  1218 the above is a vector space only if the class of subdivisions is a set, e.g. only if
       
  1219 all of our left-marked intervals are contained in some universal interval (like $J$ above).
       
  1220 perhaps we should give another version of the definition in terms of natural transformations of functors.}
       
  1221 
       
  1222 Abusing notation slightly, we will denote elements of the above space by $g$, with
       
  1223 \[
       
  1224 	\olD\ot x \ot \cbar \mapsto g(\olD\ot x \ot \cbar) \in \cY(I_1\cup\cdots\cup I_{p-1}) .
       
  1225 \]
       
  1226 For fixed $D_0$ and $D_1$, let $\cbar = \cbar'\ot\cbar''$, where $\cbar'$ corresponds to the subintervals of $D_0$ which map to $D_1$ and $\cbar''$ corresponds to the subintervals
       
  1227 which are dropped off the right side.
       
  1228 (Either $\cbar'$ or $\cbar''$ might be empty.)
       
  1229 Translating from the boundary map for $(\cM_\cC\ot {_\cC\cN})^*$ \nn{give ref?},
       
  1230 we have
       
  1231 \begin{eqnarray*}
       
  1232 	(\bd g)(\olD\ot x \ot \cbar) &=& \bd(g(\olD\ot x \ot \cbar)) + g(\olD\ot\bd(x\ot\cbar)) + \\
       
  1233 	& & \;\; g((\bd_+\olD)\ot x\ot\cbar) + \gl(g((\bd_0\olD)\ot x\ot\cbar')\ot\cbar'') .
       
  1234 \end{eqnarray*}
       
  1235 Here $\gl$ denotes the module action in $\cY_\cC$.
       
  1236 This completes the definition of $\hom_\cC(\cX_\cC \to \cY_\cC)$.
       
  1237 
       
  1238 Note that if $\bd g = 0$, then each 
       
  1239 \[
       
  1240 	g(\olD\ot -) : \cX(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_{p-1}) \to \cY(I_1\cup\cdots\cup I_{p-1})
       
  1241 \]
       
  1242 constitutes a null homotopy of
       
  1243 $g((\bd \olD)\ot -)$ (where the $g((\bd_0 \olD)\ot -)$ part of $g((\bd \olD)\ot -)$
       
  1244 should be interpreted as above).
       
  1245 
       
  1246 \nn{do we need to say anything about composing morphisms of modules?}
       
  1247 
       
  1248 \nn{should we define functors between $n$-cats in a similar way?}
  1194 
  1249 
  1195 
  1250 
  1196 \nn{...}
  1251 \nn{...}
  1197 
  1252 
  1198 
  1253