text/intro.tex
changeset 150 24028ee41a91
parent 148 2807257be382
child 151 b1e12160ef5b
equal deleted inserted replaced
149:7e8ccb11478d 150:24028ee41a91
    19 We expect applications of the blob complex to \nn{ ... } but do not address these in this paper.
    19 We expect applications of the blob complex to \nn{ ... } but do not address these in this paper.
    20 \nn{hope to apply to Kh, contact, (other examples?) in the future}
    20 \nn{hope to apply to Kh, contact, (other examples?) in the future}
    21 
    21 
    22 
    22 
    23 \subsubsection{Structure of the paper}
    23 \subsubsection{Structure of the paper}
    24 
       
    25 The first part of the paper (sections \S \ref{sec:fields}---\S \ref{sec:evaluation}) gives the definition of the blob complex, and establishes some of its properties. There are many alternative definitions of $n$-categories, and part of our difficulty defining the blob complex is simply explaining what we mean by an ``$n$-category with strong duality'' as one of the inputs. At first we entirely avoid this problem by introducing the notion of a `system of fields', and define the blob complex associated to an $n$-manifold and an $n$-dimensional system of fields. We sketch the construction of a system of fields from a $1$-category or from a pivotal $2$-category.
    24 The first part of the paper (sections \S \ref{sec:fields}---\S \ref{sec:evaluation}) gives the definition of the blob complex, and establishes some of its properties. There are many alternative definitions of $n$-categories, and part of our difficulty defining the blob complex is simply explaining what we mean by an ``$n$-category with strong duality'' as one of the inputs. At first we entirely avoid this problem by introducing the notion of a `system of fields', and define the blob complex associated to an $n$-manifold and an $n$-dimensional system of fields. We sketch the construction of a system of fields from a $1$-category or from a pivotal $2$-category.
    26 
    25 
    27 Nevertheless, when we attempt to establish all of the observed properties of the blob complex, we find this situation unsatisfactory. Thus, in the second part of the paper (section \S \ref{sec:ncats}) we pause and give yet another definition of an $n$-category, or rather a definition of an $n$-category with strong duality. (It's not clear that we could remove the duality conditions from our definition, even if we wanted to.) We call these ``topological $n$-categories'', to differentiate them from previous versions. Moreover, we find that we need analogous $A_\infty$ $n$-categories, and we define these as well following very similar axioms. When $n=1$ these reduce to the usual $A_\infty$ categories.
    26 Nevertheless, when we attempt to establish all of the observed properties of the blob complex, we find this situation unsatisfactory. Thus, in the second part of the paper (section \S \ref{sec:ncats}) we pause and give yet another definition of an $n$-category, or rather a definition of an $n$-category with strong duality. (It's not clear that we could remove the duality conditions from our definition, even if we wanted to.) We call these ``topological $n$-categories'', to differentiate them from previous versions. Moreover, we find that we need analogous $A_\infty$ $n$-categories, and we define these as well following very similar axioms.
    28 
    27 
    29 In the third part of the paper (section \S \ref{sec:ainfblob}) we explain how to construct a system of fields from a topological $n$-category, and give an alternative definition of the blob complex for an $n$-manifold and an $A_\infty$ $n$-category. Using these definitions, we show how to use the blob complex to `resolve' any topological $n$-category as an $A_\infty$ $n$-category, and relate the first and second definitions of the blob complex. We use the blob complex for $A_\infty$ $n$-categories to establish important properties of the blob complex (in both variants), in particular the `gluing formula' of Property \ref{property:gluing} below.
    28 \nn{Not sure that the next para is appropriate here}
    30 
    29 The basic idea is that each potential definition of an $n$-category makes a choice about the `shape' of morphisms. We try to be as lax as possible; a topological $n$-category associates a vector space to every $B$ diffeomorphic to the $n$-ball. This vector spaces glue together associatively. For an $A_\infty$ $n$-category, we instead associate a chain complex to each such $B$. We require that diffeomorphisms (or the complex of singular chains of diffeomorphisms in the $A_\infty$ case) act. The axioms for an $A_\infty$ $n$-category are designed to capture two main examples: the blob complexes of $n$-balls, using a topological $n$-category, and the complex $\CM{-}{X}$ of maps to a fix target space $X$.
    31 
    30 
    32 [some things to cover in the intro]
    31 In  \S \ref{sec:ainfblob} we explain how to construct a system of fields from a topological $n$-category, and give an alternative definition of the blob complex for an $n$-manifold and an $A_\infty$ $n$-category. Using these definitions, we show how to use the blob complex to `resolve' any topological $n$-category as an $A_\infty$ $n$-category, and relate the first and second definitions of the blob complex. We use the blob complex for $A_\infty$ $n$-categories to establish important properties of the blob complex (in both variants), in particular the `gluing formula' of Property \ref{property:gluing} below.
    33 \begin{itemize}
    32 
    34 \item explain relation between old and new blob complex definitions
    33 Finally, later sections address other topics. Section \S \ref{sec:comm_alg} describes the blob complex when $\cC$ is a commutative algebra, thought of as a topological $n$-category, in terms of the topology of $M$. Section \S \ref{sec:deligne} states (and in a later edition of this paper, hopefully proves) a generalisation of the Deligne conjecture (that the little discs operad acts on Hochschild cohomology) in terms of the blob complex. The appendixes prove technical results about $\CD{M}$, and make connections between our definitions of $n$-categories and familar definitions for $n=1$ and $n=2$, as well as relating the $n=1$ case of our $A_\infty$ $n$-categories with usual $A_\infty$ algebras.
    35 \item overview of sections
    34 
       
    35 \nn{some more things to cover in the intro}
       
    36 \begin{itemize}
    36 \item related: we are being unsophisticated from a homotopy theory point of
    37 \item related: we are being unsophisticated from a homotopy theory point of
    37 view and using chain complexes in many places where we could be by with spaces
    38 view and using chain complexes in many places where we could be by with spaces
    38 \item ? one of the points we make (far) below is that there is not really much
    39 \item ? one of the points we make (far) below is that there is not really much
    39 difference between (a) systems of fields and local relations and (b) $n$-cats;
    40 difference between (a) systems of fields and local relations and (b) $n$-cats;
    40 thus we tend to switch between talking in terms of one or the other
    41 thus we tend to switch between talking in terms of one or the other
   258 \nn{need to say where the remaining properties are proved.}
   259 \nn{need to say where the remaining properties are proved.}
   259 
   260 
   260 \subsection{Future directions}
   261 \subsection{Future directions}
   261 Throughout, we have resisted the temptation to work in the greatest generality possible (don't worry, it wasn't that hard). More could be said about finite characteristic (there appears in be $2$-torsion in $\bc_1(S^2, \cC)$ for any spherical $2$-category $\cC$). Much more could be said about other types of manifolds, in particular oriented, $\operatorname{Spin}$ and $\operatorname{Pin}^{\pm}$ manifolds, where boundary issues become more complicated. (We'd recommend thinking about boundaries as germs, rather than just codimension $1$ manifolds.) We've also take the path of least resistance by considering $\operatorname{PL}$ manifolds; there may be some differences for topological manifolds and smooth manifolds.
   262 Throughout, we have resisted the temptation to work in the greatest generality possible (don't worry, it wasn't that hard). More could be said about finite characteristic (there appears in be $2$-torsion in $\bc_1(S^2, \cC)$ for any spherical $2$-category $\cC$). Much more could be said about other types of manifolds, in particular oriented, $\operatorname{Spin}$ and $\operatorname{Pin}^{\pm}$ manifolds, where boundary issues become more complicated. (We'd recommend thinking about boundaries as germs, rather than just codimension $1$ manifolds.) We've also take the path of least resistance by considering $\operatorname{PL}$ manifolds; there may be some differences for topological manifolds and smooth manifolds.
   262 
   263 
   263 Many results in Hochschild homology can be understood `topologically' via the blob complex. For example, we expect that the shuffle product on the Hochschild homology of a commutative algebra $A$ simply corresponds to the gluing operation on $\bc_*(S^1 \times I, A)$, but haven't investigated the details.
   264 Many results in Hochschild homology can be understood `topologically' via the blob complex. For example, we expect that the shuffle product on the Hochschild homology of a commutative algebra $A$ simply corresponds to the gluing operation on $\bc_*(S^1 \times [0,1], A)$, but haven't investigated the details.
   264 
   265 
   265 Most importantly, however, \nn{applications!} \nn{$n=2$ cases, contact, Kh}
   266 Most importantly, however, \nn{applications!} \nn{$n=2$ cases, contact, Kh}
   266 
   267 
   267 
   268 
   268 \subsection{Thanks and acknowledgements}
   269 \subsection{Thanks and acknowledgements}
       
   270 We'd like to thank David Ben-Zvi, Michael Freedman, Vaughan Jones, Justin Roberts, Chris Schommer-Pries, Peter Teichner \nn{probably lots more} for many interesting and useful conversations. During this work, Kevin Walker has been at Microsoft Station Q, and Scott Morrison has been at Microsoft Station Q and the Miller Institute for Basic Research at UC Berkeley.