blob1.tex
changeset 55 2625a6f51684
parent 54 ead6bc1a703f
child 58 267edc250b5d
equal deleted inserted replaced
54:ead6bc1a703f 55:2625a6f51684
   253 gluing manifolds corresponds to fibered products of fields;
   253 gluing manifolds corresponds to fibered products of fields;
   254 given a field $c \in \cC(Y)$ there is a ``product field"
   254 given a field $c \in \cC(Y)$ there is a ``product field"
   255 $c\times I \in \cC(Y\times I)$; ...
   255 $c\times I \in \cC(Y\times I)$; ...
   256 \nn{should eventually include full details of definition of fields.}
   256 \nn{should eventually include full details of definition of fields.}
   257 
   257 
       
   258 \input{text/fields.tex}
       
   259 
   258 \nn{note: probably will suppress from notation the distinction
   260 \nn{note: probably will suppress from notation the distinction
   259 between fields and their (orientation-reversal) duals}
   261 between fields and their (orientation-reversal) duals}
   260 
   262 
   261 \nn{remark that if top dimensional fields are not already linear
   263 \nn{remark that if top dimensional fields are not already linear
   262 then we will soon linearize them(?)}
   264 then we will soon linearize them(?)}
   937 
   939 
   938 \medskip
   940 \medskip
   939 
   941 
   940 \nn{say something about associativity here}
   942 \nn{say something about associativity here}
   941 
   943 
   942 \section{Gluing}
   944 \input{text/A-infty.tex}
   943 \label{sec:gluing}%
   945 
   944 
   946 \input{text/gluing.tex}
   945 We now turn to establishing the gluing formula for blob homology, restated from Property \ref{property:gluing} in the Introduction
       
   946 \begin{itemize}
       
   947 %\mbox{}% <-- gets the indenting right
       
   948 \item For any $(n-1)$-manifold $Y$, the blob homology of $Y \times I$ is
       
   949 naturally an $A_\infty$ category. % We'll write $\bc_*(Y)$ for $\bc_*(Y \times I)$ below.
       
   950 
       
   951 \item For any $n$-manifold $X$, with $Y$ a codimension $0$-submanifold of its boundary, the blob homology of $X$ is naturally an
       
   952 $A_\infty$ module for $\bc_*(Y \times I)$.
       
   953 
       
   954 \item For any $n$-manifold $X$, with $Y \cup Y^{\text{op}}$ a codimension
       
   955 $0$-submanifold of its boundary, the blob homology of $X'$, obtained from
       
   956 $X$ by gluing along $Y$, is the $A_\infty$ self-tensor product of
       
   957 $\bc_*(X)$ as an $\bc_*(Y \times I)$-bimodule.
       
   958 \begin{equation*}
       
   959 \bc_*(X') \iso \bc_*(X) \Tensor^{A_\infty}_{\mathclap{\bc_*(Y \times I)}} \!\!\!\!\!\!\xymatrix{ \ar@(ru,rd)@<-1ex>[]}
       
   960 \end{equation*}
       
   961 \end{itemize}
       
   962 
       
   963 Although this gluing formula is stated in terms of $A_\infty$ categories and their (bi-)modules, it will be more natural for us to give alternative
       
   964 definitions of `topological' $A_\infty$-categories and their bimodules, explain how to translate between the `algebraic' and `topological' definitions,
       
   965 and then prove the gluing formula in the topological langauge. Section \ref{sec:topological-A-infty} below explains these definitions, and establishes
       
   966 the desired equivalence. This is quite involved, and in particular requires us to generalise the definition of blob homology to allow $A_\infty$ algebras
       
   967 as inputs, and to re-establish many of the properties of blob homology in this generality. Many readers may prefer to read the
       
   968 Definitions \ref{defn:topological-algebra} and \ref{defn:topological-module} of `topological' $A_\infty$-categories, and Definition \ref{???} of the
       
   969 self-tensor product of a `topological' $A_\infty$-bimodule, then skip to \S \ref{sec:boundary-action} and \S \ref{sec:gluing-formula} for the proofs
       
   970 of the gluing formula in the topological context.
       
   971 
       
   972 \subsection{`Topological' $A_\infty$ $n$-categories}
       
   973 \label{sec:topological-A-infty}%
       
   974 
       
   975 This section prepares the ground for establishing Property \ref{property:gluing} by defining the notion of a \emph{topological $A_\infty$-$n$-category}.
       
   976 The main result of this section is
       
   977 
       
   978 \begin{thm}
       
   979 Topological $A_\infty$-$1$-categories are equivalent to the usual notion of
       
   980 $A_\infty$-$1$-categories.
       
   981 \end{thm}
       
   982 
       
   983 Before proving this theorem, we embark upon a long string of definitions.
       
   984 For expository purposes, we begin with the $n=1$ special cases,\scott{Why are we treating the $n>1$ cases at all?} and define
       
   985 first topological $A_\infty$-algebras, then topological $A_\infty$-categories, and then topological $A_\infty$-modules over these. We then turn
       
   986 to the general $n$ case, defining topological $A_\infty$-$n$-categories and their modules.
       
   987 \nn{Something about duals?}
       
   988 \todo{Explain that we're not making contact with any previous notions for the general $n$ case?}
       
   989 \kevin{probably we should say something about the relation
       
   990 to [framed] $E_\infty$ algebras
       
   991 }
       
   992 
       
   993 \todo{}
       
   994 Various citations we might want to make:
       
   995 \begin{itemize}
       
   996 \item \cite{MR2061854} McClure and Smith's review article
       
   997 \item \cite{MR0420610} May, (inter alia, definition of $E_\infty$ operad)
       
   998 \item \cite{MR0236922,MR0420609} Boardman and Vogt
       
   999 \item \cite{MR1256989} definition of framed little-discs operad
       
  1000 \end{itemize}
       
  1001 
       
  1002 \begin{defn}
       
  1003 \label{defn:topological-algebra}%
       
  1004 A ``topological $A_\infty$-algebra'' $A$ consists of the following data.
       
  1005 \begin{enumerate}
       
  1006 \item For each $1$-manifold $J$ diffeomorphic to the standard interval
       
  1007 $I=\left[0,1\right]$, a complex of vector spaces $A(J)$.
       
  1008 % either roll functoriality into the evaluation map
       
  1009 \item For each pair of intervals $J,J'$ an `evaluation' chain map
       
  1010 $\ev_{J \to J'} : \CD{J \to J'} \tensor A(J) \to A(J')$.
       
  1011 \item For each decomposition of intervals $J = J'\cup J''$,
       
  1012 a gluing map $\gl_{J',J''} : A(J') \tensor A(J'') \to A(J)$.
       
  1013 % or do it as two separate pieces of data
       
  1014 %\item along with an `evaluation' chain map $\ev_J : \CD{J} \tensor A(J) \to A(J)$,
       
  1015 %\item for each diffeomorphism $\phi : J \to J'$, an isomorphism $A(\phi) : A(J) \isoto A(J')$,
       
  1016 %\item and for each pair of intervals $J,J'$ a gluing map $\gl_{J,J'} : A(J) \tensor A(J') \to A(J \cup J')$,
       
  1017 \end{enumerate}
       
  1018 This data is required to satisfy the following conditions.
       
  1019 \begin{itemize}
       
  1020 \item The evaluation chain map is associative, in that the diagram
       
  1021 \begin{equation*}
       
  1022 \xymatrix{
       
  1023  & \quad \mathclap{\CD{J' \to J''} \tensor \CD{J \to J'} \tensor A(J)} \quad \ar[dr]^{\id \tensor \ev_{J \to J'}} \ar[dl]_{\compose \tensor \id} & \\
       
  1024 \CD{J' \to J''} \tensor A(J') \ar[dr]^{\ev_{J' \to J''}} & & \CD{J \to J''} \tensor A(J) \ar[dl]_{\ev_{J \to J''}} \\
       
  1025  & A(J'') &
       
  1026 }
       
  1027 \end{equation*}
       
  1028 commutes up to homotopy.
       
  1029 Here the map $$\compose : \CD{J' \to J''} \tensor \CD{J \to J'} \to \CD{J \to J''}$$ is a composition: take products of singular chains first, then compose diffeomorphisms.
       
  1030 %% or the version for separate pieces of data:
       
  1031 %\item If $\phi$ is a diffeomorphism from $J$ to itself, the maps $\ev_J(\phi, -)$ and $A(\phi)$ are the same.
       
  1032 %\item The evaluation chain map is associative, in that the diagram
       
  1033 %\begin{equation*}
       
  1034 %\xymatrix{
       
  1035 %\CD{J} \tensor \CD{J} \tensor A(J) \ar[r]^{\id \tensor \ev_J} \ar[d]_{\compose \tensor \id} &
       
  1036 %\CD{J} \tensor A(J) \ar[d]^{\ev_J} \\
       
  1037 %\CD{J} \tensor A(J) \ar[r]_{\ev_J} &
       
  1038 %A(J)
       
  1039 %}
       
  1040 %\end{equation*}
       
  1041 %commutes. (Here the map $\compose : \CD{J} \tensor \CD{J} \to \CD{J}$ is a composition: take products of singular chains first, then use the group multiplication in $\Diff(J)$.)
       
  1042 \item The gluing maps are \emph{strictly} associative. That is, given $J$, $J'$ and $J''$, the diagram
       
  1043 \begin{equation*}
       
  1044 \xymatrix{
       
  1045 A(J) \tensor A(J') \tensor A(J'') \ar[rr]^{\gl_{J,J'} \tensor \id} \ar[d]_{\id \tensor \gl_{J',J''}} &&
       
  1046 A(J \cup J') \tensor A(J'') \ar[d]^{\gl_{J \cup J', J''}} \\
       
  1047 A(J) \tensor A(J' \cup J'') \ar[rr]_{\gl_{J, J' \cup J''}} &&
       
  1048 A(J \cup J' \cup J'')
       
  1049 }
       
  1050 \end{equation*}
       
  1051 commutes.
       
  1052 \item The gluing and evaluation maps are compatible.
       
  1053 \nn{give diagram, or just say ``in the obvious way", or refer to diagram in blob eval map section?}
       
  1054 \end{itemize}
       
  1055 \end{defn}
       
  1056 
       
  1057 \begin{rem}
       
  1058 We can restrict the evaluation map to $0$-chains, and see that $J \mapsto A(J)$ and $(\phi:J \to J') \mapsto \ev_{J \to J'}(\phi, \bullet)$ together
       
  1059 constitute a functor from the category of intervals and diffeomorphisms between them to the category of complexes of vector spaces.
       
  1060 Further, once this functor has been specified, we only need to know how the evaluation map acts when $J = J'$.
       
  1061 \end{rem}
       
  1062 
       
  1063 %% if we do things separately, we should say this:
       
  1064 %\begin{rem}
       
  1065 %Of course, the first and third pieces of data (the complexes, and the isomorphisms) together just constitute a functor from the category of
       
  1066 %intervals and diffeomorphisms between them to the category of complexes of vector spaces.
       
  1067 %Further, one can combine the second and third pieces of data, asking instead for a map
       
  1068 %\begin{equation*}
       
  1069 %\ev_{J,J'} : \CD{J \to J'} \tensor A(J) \to A(J').
       
  1070 %\end{equation*}
       
  1071 %(Any $k$-parameter family of diffeomorphisms in $C_k(\Diff(J \to J'))$ factors into a single diffeomorphism $J \to J'$ and a $k$-parameter family of
       
  1072 %diffeomorphisms in $\CD{J'}$.)
       
  1073 %\end{rem}
       
  1074 
       
  1075 To generalise the definition to that of a category, we simply introduce a set of objects which we call $A(pt)$. Now we associate complexes to each
       
  1076 interval with boundary conditions $(J, c_-, c_+)$, with $c_-, c_+ \in A(pt)$, and only ask for gluing maps when the boundary conditions match up:
       
  1077 \begin{equation*}
       
  1078 \gl : A(J, c_-, c_0) \tensor A(J', c_0, c_+) \to A(J \cup J', c_-, c_+).
       
  1079 \end{equation*}
       
  1080 The action of diffeomorphisms (and of $k$-parameter families of diffeomorphisms) ignores the boundary conditions.
       
  1081 \todo{we presumably need to say something about $\id_c \in A(J, c, c)$.}
       
  1082 
       
  1083 At this point we can give two motivating examples. The first is `chains of maps to $M$' for some fixed target space $M$.
       
  1084 \begin{defn}
       
  1085 Define the topological $A_\infty$ category $C_*(\Maps(\bullet \to M))$ by
       
  1086 \begin{enumerate}
       
  1087 \item $A(J) = C_*(\Maps(J \to M))$, singular chains on the space of smooth maps from $J$ to $M$,
       
  1088 \item $\ev_{J,J'} : \CD{J \to J'} \tensor A(J) \to A(J')$ is the composition
       
  1089 \begin{align*}
       
  1090 \CD{J \to J'} \tensor C_*(\Maps(J \to M)) & \to C_*(\Diff(J \to J') \times \Maps(J \to M)) \\ & \to C_*(\Maps(J' \to M)),
       
  1091 \end{align*}
       
  1092 where the first map is the product of singular chains, and the second is precomposition by the inverse of a diffeomorphism,
       
  1093 \item $\gl_{J,J'} : A(J) \tensor A(J')$ takes the product of singular chains, then glues maps to $M$ together.
       
  1094 \end{enumerate}
       
  1095 The associativity conditions are trivially satisfied.
       
  1096 \end{defn}
       
  1097 
       
  1098 The second example is simply the blob complex of $Y \times J$, for any $n-1$ manifold $Y$. We define $A(J) = \bc_*(Y \times J)$.
       
  1099 Observe $\Diff(J \to J')$ embeds into $\Diff(Y \times J \to Y \times J')$. The evaluation and gluing maps then come directly from Properties
       
  1100 \ref{property:evaluation} and \ref{property:gluing-map} respectively. We'll often write $bc_*(Y)$ for this algebra.
       
  1101 
       
  1102 The definition of a module follows closely the definition of an algebra or category.
       
  1103 \begin{defn}
       
  1104 \label{defn:topological-module}%
       
  1105 A topological $A_\infty$-(left-)module $M$ over a topological $A_\infty$ category $A$
       
  1106 consists of the following data.
       
  1107 \begin{enumerate}
       
  1108 \item A functor $K \mapsto M(K)$ from $1$-manifolds diffeomorphic to the standard interval, with the upper boundary point `marked', to complexes of vector spaces.
       
  1109 \item For each pair of such marked intervals,
       
  1110 an `evaluation' chain map $\ev_{K\to K'} : \CD{K \to K'} \tensor M(K) \to M(K')$.
       
  1111 \item For each decomposition $K = J\cup K'$ of the marked interval
       
  1112 $K$ into an unmarked interval $J$ and a marked interval $K'$, a gluing map
       
  1113 $\gl_{J,K'} : A(J) \tensor M(K') \to M(K)$.
       
  1114 \end{enumerate}
       
  1115 The above data is required to satisfy
       
  1116 conditions analogous to those in Definition \ref{defn:topological-algebra}.
       
  1117 \end{defn}
       
  1118 
       
  1119 For any manifold $X$ with $\bdy X = Y$ (or indeed just with $Y$ a codimension $0$-submanifold of $\bdy X$) we can think of $\bc_*(X)$ as
       
  1120 a topological $A_\infty$ module over $\bc_*(Y)$, the topological $A_\infty$ category described above.
       
  1121 For each interval $K$, we have $M(K) = \bc_*((Y \times K) \cup_Y X)$.
       
  1122 (Here we glue $Y \times pt$ to $Y \subset \bdy X$, where $pt$ is the marked point of $K$.) Again, the evaluation and gluing maps come directly from Properties
       
  1123 \ref{property:evaluation} and \ref{property:gluing-map} respectively.
       
  1124 
       
  1125 The definition of a bimodule is like the definition of a module,
       
  1126 except that we have two disjoint marked intervals $K$ and $L$, one with a marked point
       
  1127 on the upper boundary and the other with a marked point on the lower boundary.
       
  1128 There are evaluation maps corresponding to gluing unmarked intervals
       
  1129 to the unmarked ends of $K$ and $L$.
       
  1130 
       
  1131 Let $X$ be an $n$-manifold with a copy of $Y \du -Y$ embedded as a
       
  1132 codimension-0 submanifold of $\bdy X$.
       
  1133 Then the the assignment $K,L \mapsto \bc_*(X \cup_Y (Y\times K) \cup_{-Y} (-Y\times L))$ has the
       
  1134 structure of a topological $A_\infty$ bimodule over $\bc_*(Y)$.
       
  1135 
       
  1136 Next we define the coend
       
  1137 (or gluing or tensor product or self tensor product, depending on the context)
       
  1138 $\gl(M)$ of a topological $A_\infty$ bimodule $M$. This will be an `initial' or `universal' object satisfying various properties.
       
  1139 \begin{defn}
       
  1140 We define a category $\cG(M)$. Objects consist of the following data.
       
  1141 \begin{itemize}
       
  1142 \item For each interval $N$ with both endpoints marked, a complex of vector spaces C(N).
       
  1143 \item For each pair of intervals $N,N'$ an evaluation chain map
       
  1144 $\ev_{N \to N'} : \CD{N \to N'} \tensor C(N) \to C(N')$.
       
  1145 \item For each decomposition of intervals $N = K\cup L$,
       
  1146 a gluing map $\gl_{K,L} : M(K,L) \to C(N)$.
       
  1147 \end{itemize}
       
  1148 This data must satisfy the following conditions.
       
  1149 \begin{itemize}
       
  1150 \item The evaluation maps are associative.
       
  1151 \nn{up to homotopy?}
       
  1152 \item Gluing is strictly associative.
       
  1153 That is, given a decomposition $N = K\cup J\cup L$, the chain maps associated to
       
  1154 $K\du J\du L \to (K\cup J)\du L \to N$ and $K\du J\du L \to K\du (J\cup L) \to N$
       
  1155 agree.
       
  1156 \item the gluing and evaluation maps are compatible.
       
  1157 \end{itemize}
       
  1158 
       
  1159 A morphism $f$ between such objects $C$ and $C'$ is a chain map $f_N : C(N) \to C'(N)$ for each interval $N$ with both endpoints marked,
       
  1160 satisfying the following conditions.
       
  1161 \begin{itemize}
       
  1162 \item For each pair of intervals $N,N'$, the diagram
       
  1163 \begin{equation*}
       
  1164 \xymatrix{
       
  1165 \CD{N \to N'} \tensor C(N) \ar[d]_{\ev} \ar[r]^{\id \tensor f_N} & \CD{N \to N'} \tensor C'(N) \ar[d]^{\ev} \\
       
  1166 C(N) \ar[r]_{f_N} & C'(N)
       
  1167 }
       
  1168 \end{equation*}
       
  1169 commutes.
       
  1170 \item For each decomposition of intervals $N = K \cup L$, the gluing map for $C'$, $\gl'_{K,L} : M(K,L) \to C'(N)$ is the composition
       
  1171 $$M(K,L) \xto{\gl_{K,L}} C(N) \xto{f_N} C'(N).$$
       
  1172 \end{itemize}
       
  1173 \end{defn}
       
  1174 
       
  1175 We now define $\gl(M)$ to be an initial object in the category $\cG{M}$. This just says that for any other object $C'$ in $\cG{M}$,
       
  1176 there are chain maps $f_N: \gl(M)(N) \to C'(N)$, compatible with the action of families of diffeomorphisms, so that the gluing maps $M(K,L) \to C'(N)$
       
  1177 factor through the gluing maps for $\gl(M)$.
       
  1178 
       
  1179 We return to our two favourite examples. First, the coend of the topological $A_\infty$ category $C_*(\Maps(\bullet \to M))$ as a bimodule over itself
       
  1180 is essentially $C_*(\Maps(S^1 \to M))$. \todo{}
       
  1181 
       
  1182 For the second example, given $X$ and $Y\du -Y \sub \bdy X$, the assignment
       
  1183 $$N \mapsto \bc_*(X \cup_{Y\du -Y} (N\times Y))$$ clearly gives an object in $\cG{M}$.
       
  1184 Showing that it is an initial object is the content of the gluing theorem proved below.
       
  1185 
       
  1186 The definitions for a topological $A_\infty$-$n$-category are very similar to the above
       
  1187 $n=1$ case.
       
  1188 One replaces intervals with manifolds diffeomorphic to the ball $B^n$.
       
  1189 Marked points are replaced by copies of $B^{n-1}$ in $\bdy B^n$.
       
  1190 
       
  1191 \nn{give examples: $A(J^n) = \bc_*(Z\times J)$ and $A(J^n) = C_*(\Maps(J \to M))$.}
       
  1192 
       
  1193 \todo{the motivating example $C_*(\maps(X, M))$}
       
  1194 
       
  1195 
       
  1196 
       
  1197 \newcommand{\skel}[1]{\operatorname{skeleton}(#1)}
       
  1198 
       
  1199 Given a topological $A_\infty$-category $\cC$, we can construct an `algebraic' $A_\infty$ category $\skel{\cC}$. First, pick your
       
  1200 favorite diffeomorphism $\phi: I \cup I \to I$.
       
  1201 \begin{defn}
       
  1202 We'll write $\skel{\cC} = (A, m_k)$. Define $A = \cC(I)$, and $m_2 : A \tensor A \to A$ by
       
  1203 \begin{equation*}
       
  1204 m_2 \cC(I) \tensor \cC(I) \xrightarrow{\gl_{I,I}} \cC(I \cup I) \xrightarrow{\cC(\phi)} \cC(I).
       
  1205 \end{equation*}
       
  1206 Next, we define all the `higher associators' $m_k$ by
       
  1207 \todo{}
       
  1208 \end{defn}
       
  1209 
       
  1210 Give an `algebraic' $A_\infty$ category $(A, m_k)$, we can construct a topological $A_\infty$-category, which we call $\bc_*^A$. You should
       
  1211 think of this as a generalisation of the blob complex, although the construction we give will \emph{not} specialise to exactly the usual definition
       
  1212 in the case the $A$ is actually an associative category.
       
  1213 
       
  1214 We'll first define $\cT_{k,n}$ to be the set of planar forests consisting of $n-k$ trees, with a total of $n$ leaves. Thus
       
  1215 \todo{$\cT_{0,n}$ has 1 element, with $n$ vertical lines, $\cT_{1,n}$ has $n-1$ elements, each with a single trivalent vertex, $\cT_{2,n}$ etc...}
       
  1216 \begin{align*}
       
  1217 \end{align*}
       
  1218 
       
  1219 \begin{defn}
       
  1220 The topological $A_\infty$ category $\bc_*^A$ is doubly graded, by `blob degree' and `internal degree'. We'll write $\bc_k^A$ for the blob degree $k$ piece.
       
  1221 The homological degree of an element $a \in \bc_*^A(J)$
       
  1222 is the sum of the blob degree and the internal degree.
       
  1223 
       
  1224 We first define $\bc_0^A(J)$ as a vector space by
       
  1225 \begin{equation*}
       
  1226 \bc_0^A(J) = \DirectSum_{\substack{\{J_i\}_{i=1}^n \\ \mathclap{\bigcup_i J_i = J}}} \Tensor_{i=1}^n (\CD{J_i \to I} \tensor A).
       
  1227 \end{equation*}
       
  1228 (That is, for each division of $J$ into finitely many subintervals,
       
  1229 we have the tensor product of chains of diffeomorphisms from each subinterval to the standard interval,
       
  1230 and a copy of $A$ for each subinterval.)
       
  1231 The internal degree of an element $(f_1 \tensor a_1, \ldots, f_n \tensor a_n)$ is the sum of the dimensions of the singular chains
       
  1232 plus the sum of the homological degrees of the elements of $A$.
       
  1233 The differential is defined just by the graded Leibniz rule and the differentials on $\CD{J_i \to I}$ and on $A$.
       
  1234 
       
  1235 Next,
       
  1236 \begin{equation*}
       
  1237 \bc_1^A(J) = \DirectSum_{\substack{\{J_i\}_{i=1}^n \\ \mathclap{\bigcup_i J_i = J}}} \DirectSum_{T \in \cT_{1,n}} \Tensor_{i=1}^n (\CD{J_i \to I} \tensor A).
       
  1238 \end{equation*}
       
  1239 \end{defn}
       
  1240 
       
  1241 \begin{figure}[!ht]
       
  1242 \begin{equation*}
       
  1243 \mathfig{0.7}{associahedron/A4-vertices}
       
  1244 \end{equation*}
       
  1245 \caption{The vertices of the $k$-dimensional associahedron are indexed by binary trees on $k+2$ leaves.}
       
  1246 \label{fig:A4-vertices}
       
  1247 \end{figure}
       
  1248 
       
  1249 \begin{figure}[!ht]
       
  1250 \begin{equation*}
       
  1251 \mathfig{0.7}{associahedron/A4-faces}
       
  1252 \end{equation*}
       
  1253 \caption{The faces of the $k$-dimensional associahedron are indexed by trees with $2$ vertices on $k+2$ leaves.}
       
  1254 \label{fig:A4-vertices}
       
  1255 \end{figure}
       
  1256 
       
  1257 \newcommand{\tm}{\widetilde{m}}
       
  1258 
       
  1259 Let $\tm_1(a) = a$.
       
  1260 
       
  1261 We now define $\bdy(\tm_k(a_1 \tensor \cdots \tensor a_k))$, first giving an opaque formula, then explaining the combinatorics behind it.
       
  1262 \begin{align}
       
  1263 \notag \bdy(\tm_k(a_1 & \tensor \cdots \tensor a_k)) = \\
       
  1264 \label{eq:bdy-tm-k-1}   & \phantom{+} \sum_{\ell'=0}^{k-1} (-1)^{\abs{\tm_k}+\sum_{j=1}^{\ell'} \abs{a_j}} \tm_k(a_1 \tensor \cdots \tensor \bdy a_{\ell'+1} \tensor \cdots \tensor a_k) + \\
       
  1265 \label{eq:bdy-tm-k-2}   &          +  \sum_{\ell=1}^{k-1} \tm_{\ell}(a_1 \tensor \cdots \tensor a_{\ell}) \tensor \tm_{k-\ell}(a_{\ell+1} \tensor \cdots \tensor a_k) + \\
       
  1266 \label{eq:bdy-tm-k-3}   &          +  \sum_{\ell=1}^{k-1} \sum_{\ell'=0}^{l-1} (-1)^{\abs{\tm_k}+\sum_{j=1}^{\ell'} \abs{a_j}} \tm_{\ell}(a_1 \tensor \cdots \tensor m_{k-\ell + 1}(a_{\ell' + 1} \tensor \cdots \tensor a_{\ell' + k - \ell + 1}) \tensor \cdots \tensor a_k)
       
  1267 \end{align}
       
  1268 The first set of terms in $\bdy(\tm_k(a_1 \tensor \cdots \tensor a_k))$ just have $\bdy$ acting on each argument $a_i$.
       
  1269 The terms appearing in \eqref{eq:bdy-tm-k-2} and \eqref{eq:bdy-tm-k-3} are indexed by trees with $2$ vertices on $k+1$ leaves.
       
  1270 Note here that we have one more leaf than there arguments of $\tm_k$.
       
  1271 (See Figure \ref{fig:A4-vertices}, in which the rightmost branches are helpfully drawn in red.)
       
  1272 We will treat the vertices which involve a rightmost (red) branch differently from the vertices which only involve the first $k$ leaves.
       
  1273 The terms in \eqref{eq:bdy-tm-k-2} arise in the cases in which both
       
  1274 vertices are rightmost, and the corresponding term in $\bdy(\tm_k(a_1 \tensor \cdots \tensor a_k))$ is a tensor product of the form
       
  1275 $$\tm_{\ell}(a_1 \tensor \cdots \tensor a_{\ell}) \tensor \tm_{k-\ell}(a_{\ell+1} \tensor \cdots \tensor a_k)$$
       
  1276 where $\ell + 1$ and $k - \ell + 1$ are the number of branches entering the vertices.
       
  1277 If only one vertex is rightmost, we get the term $$\tm_{\ell}(a_1 \tensor \cdots \tensor m_{k-\ell+1}(a_{\ell' + 1} \tensor \cdots \tensor a_{\ell' + k - \ell}) \tensor \cdots \tensor a_k)$$
       
  1278 in \eqref{eq:bdy-tm-k-3},
       
  1279 where again $\ell + 1$ is the number of branches entering the rightmost vertex, $k-\ell+1$ is the number of branches entering the other vertex, and $\ell'$ is the number of edges meeting the rightmost vertex which start to the left of the other vertex.
       
  1280 For example, we have
       
  1281 \begin{align*}
       
  1282 \bdy(\tm_2(a \tensor b)) & = \left(\tm_2(\bdy a \tensor b) + (-1)^{\abs{a}} \tm_2(a \tensor \bdy b)\right) + \\
       
  1283                          & \qquad - a \tensor b + m_2(a \tensor b) \\
       
  1284 \bdy(\tm_3(a \tensor b \tensor c)) & = \left(- \tm_3(\bdy a \tensor b \tensor c) + (-1)^{\abs{a} + 1} \tm_3(a \tensor \bdy b \tensor c) + (-1)^{\abs{a} + \abs{b} + 1} \tm_3(a \tensor b \tensor \bdy c)\right) + \\
       
  1285                                    & \qquad + \left(- \tm_2(a \tensor b) \tensor c + a \tensor \tm_2(b \tensor c)\right) + \\
       
  1286                                    & \qquad + \left(- \tm_2(m_2(a \tensor b) \tensor c) + \tm_2(a, m_2(b \tensor c)) + m_3(a \tensor b \tensor c)\right)
       
  1287 \end{align*}
       
  1288 \begin{align*}
       
  1289 \bdy(& \tm_4(a \tensor b \tensor c \tensor d)) = \left(\tm_4(\bdy a \tensor b \tensor c \tensor d) + \cdots + \tm_4(a \tensor b \tensor c \tensor \bdy d)\right) + \\
       
  1290                                              & + \left(\tm_3(a \tensor b \tensor c) \tensor d + \tm_2(a \tensor b) \tensor \tm_2(c \tensor d) + a \tensor \tm_3(b \tensor c \tensor d)\right) + \\
       
  1291                                              & + \left(\tm_3(m_2(a \tensor b) \tensor c \tensor d) + \tm_3(a \tensor m_2(b \tensor c) \tensor d) + \tm_3(a \tensor b \tensor m_2(c \tensor d))\right. + \\
       
  1292                                              & + \left.\tm_2(m_3(a \tensor b \tensor c) \tensor d) + \tm_2(a \tensor m_3(b \tensor c \tensor d)) + m_4(a \tensor b \tensor c \tensor d)\right) \\
       
  1293 \end{align*}
       
  1294 See Figure \ref{fig:A4-terms}, comparing it against Figure \ref{fig:A4-faces}, to see this illustrated in the case $k=4$. There the $3$ faces closest
       
  1295 to the top of the diagram have two rightmost vertices, while the other $6$ faces have only one.
       
  1296 
       
  1297 \begin{figure}[!ht]
       
  1298 \begin{equation*}
       
  1299 \mathfig{1.0}{associahedron/A4-terms}
       
  1300 \end{equation*}
       
  1301 \caption{The terms of $\bdy(\tm_k(a_1 \tensor \cdots \tensor a_k))$ correspond to the faces of the $k-1$ dimensional associahedron.}
       
  1302 \label{fig:A4-terms}
       
  1303 \end{figure}
       
  1304 
       
  1305 \begin{lem}
       
  1306 This definition actually results in a chain complex, that is $\bdy^2 = 0$.
       
  1307 \end{lem}
       
  1308 \begin{proof}
       
  1309 \newcommand{\T}{\text{---}}
       
  1310 \newcommand{\ssum}[1]{{\sum}^{(#1)}}
       
  1311 For the duration of this proof, inside a summation over variables $l_1, \ldots, l_m$, an expression with $m$ dashes will be interpreted
       
  1312 by replacing each dash with contiguous factors from $a_1 \tensor \cdots \tensor a_k$, so the first dash takes the first $l_1$ factors, the second
       
  1313 takes the next $l_2$ factors, and so on. Further, we'll write $\ssum{m}$ for $\sum_{\sum_{i=1}^m l_i = k}$.
       
  1314 In this notation, the formula for the differential becomes
       
  1315 \begin{align}
       
  1316 \notag
       
  1317 \bdy \tm(\T) & = \ssum{2} \tm(\T) \tensor \tm(\T) \times \sigma_{0;l_1,l_2} + \ssum{3} \tm(\T \tensor m(\T) \tensor \T) \times \tau_{0;l_1,l_2,l_3} \\
       
  1318 \intertext{and we calculate}
       
  1319 \notag
       
  1320 \bdy^2 \tm(\T) & = \ssum{2} \bdy \tm(\T) \tensor \tm(\T) \times \sigma_{0;l_1,l_2} \\
       
  1321 \notag         & \qquad + \ssum{2} \tm(\T) \tensor \bdy \tm(\T) \times \sigma_{0;l_1,l_2} \\
       
  1322 \notag         & \qquad + \ssum{3} \bdy \tm(\T \tensor m(\T) \tensor \T) \times \tau_{0;l_1,l_2,l_3} \\
       
  1323 \label{eq:d21} & = \ssum{3} \tm(\T) \tensor \tm(\T) \tensor \tm(\T) \times \sigma_{0;l_1+l_2,l_3} \sigma_{0;l_1,l_2} \\
       
  1324 \label{eq:d22} & \qquad + \ssum{4} \tm(\T \tensor m(\T) \tensor \T) \tensor \tm(\T) \times \sigma_{0;l_1+l_2+l_3,l_4} \tau_{0;l_1,l_2,l_3} \\
       
  1325 \label{eq:d23} & \qquad + \ssum{3} \tm(\T) \tensor \tm(\T) \tensor \tm(\T) \times \sigma_{0;l_1,l_2+l_3} \sigma_{l_1;l_2,l_3} \\
       
  1326 \label{eq:d24} & \qquad + \ssum{4} \tm(\T) \tensor \tm(\T \tensor m(\T) \tensor \T) \times \sigma_{0;l_1,l_2+l_3+l_4} \tau_{l_1;l_2,l_3,l_4} \\
       
  1327 \label{eq:d25} & \qquad + \ssum{4} \tm(\T \tensor m(\T) \tensor \T) \tensor \tm(\T) \times \tau_{0;l_1,l_2,l_3+l_4} ??? \\
       
  1328 \label{eq:d26} & \qquad + \ssum{4} \tm(\T) \tensor \tm(\T \tensor m(\T) \tensor \T) \times \tau_{0;l_1+l_2,l_3,l_4} \sigma_{0;l_1,l_2} \\
       
  1329 \label{eq:d27} & \qquad + \ssum{5} \tm(\T \tensor m(\T) \tensor \T \tensor m(\T) \tensor \T) \times \tau_{0;l_1+l_2+l_3,l_4,l_5} \tau_{0;l_1,l_2,l_3}  \\
       
  1330 \label{eq:d28} & \qquad + \ssum{5} \tm(\T \tensor m(\T \tensor m(\T) \tensor \T) \tensor \T) \times \tau_{0;l_1,l_2+l_3+l_4,l_5} ??? \\
       
  1331 \label{eq:d29} & \qquad + \ssum{5} \tm(\T \tensor m(\T) \tensor \T \tensor m(\T) \tensor \T) \times \tau_{0;l_1,l_2,l_3+l_4+l_5} ???
       
  1332 \end{align}
       
  1333 Now, we see the the expressions on the right hand side of line \eqref{eq:d21} and those on \eqref{eq:d23} cancel. Similarly, line \eqref{eq:d22} cancels
       
  1334 with \eqref{eq:d25}, \eqref{eq:d24} with \eqref{eq:d26}, and \eqref{eq:d27} with \eqref{eq:d29}. Finally, we need to see that \eqref{eq:d28} gives $0$,
       
  1335 by the usual relations between the $m_k$ in an $A_\infty$ algebra.
       
  1336 \end{proof}
       
  1337 
       
  1338 \nn{Need to let the input $n$-category $C$ be a graded thing (e.g. DG
       
  1339 $n$-category or $A_\infty$ $n$-category). DG $n$-category case is pretty
       
  1340 easy, I think, so maybe it should be done earlier??}
       
  1341 
       
  1342 \bigskip
       
  1343 
       
  1344 Outline:
       
  1345 \begin{itemize}
       
  1346 \item recall defs of $A_\infty$ category (1-category only), modules, (self-) tensor product.
       
  1347 use graphical/tree point of view, rather than following Keller exactly
       
  1348 \item define blob complex in $A_\infty$ case; fat mapping cones?  tree decoration?
       
  1349 \item topological $A_\infty$ cat def (maybe this should go first); also modules gluing
       
  1350 \item motivating example: $C_*(\maps(X, M))$
       
  1351 \item maybe incorporate dual point of view (for $n=1$), where points get
       
  1352 object labels and intervals get 1-morphism labels
       
  1353 \end{itemize}
       
  1354 
       
  1355 
       
  1356 \subsection{$A_\infty$ action on the boundary}
       
  1357 \label{sec:boundary-action}%
       
  1358 Let $Y$ be an $n{-}1$-manifold.
       
  1359 The collection of complexes $\{\bc_*(Y\times I; a, b)\}$, where $a, b \in \cC(Y)$ are boundary
       
  1360 conditions on $\bd(Y\times I) = Y\times \{0\} \cup Y\times\{1\}$, has the structure
       
  1361 of an $A_\infty$ category.
       
  1362 
       
  1363 Composition of morphisms (multiplication) depends of a choice of homeomorphism
       
  1364 $I\cup I \cong I$.  Given this choice, gluing gives a map
       
  1365 \eq{
       
  1366     \bc_*(Y\times I; a, b) \otimes \bc_*(Y\times I; b, c) \to \bc_*(Y\times (I\cup I); a, c)
       
  1367             \cong \bc_*(Y\times I; a, c)
       
  1368 }
       
  1369 Using (\ref{CDprop}) and the inclusion $\Diff(I) \sub \Diff(Y\times I)$ gives the various
       
  1370 higher associators of the $A_\infty$ structure, more or less canonically.
       
  1371 
       
  1372 \nn{is this obvious?  does more need to be said?}
       
  1373 
       
  1374 Let $\cA(Y)$ denote the $A_\infty$ category $\bc_*(Y\times I; \cdot, \cdot)$.
       
  1375 
       
  1376 Similarly, if $Y \sub \bd X$, a choice of collaring homeomorphism
       
  1377 $(Y\times I) \cup_Y X \cong X$ gives the collection of complexes $\bc_*(X; r, a)$
       
  1378 (variable $a \in \cC(Y)$; fixed $r \in \cC(\bd X \setmin Y)$) the structure of a representation of the
       
  1379 $A_\infty$ category $\{\bc_*(Y\times I; \cdot, \cdot)\}$.
       
  1380 Again the higher associators come from the action of $\Diff(I)$ on a collar neighborhood
       
  1381 of $Y$ in $X$.
       
  1382 
       
  1383 In the next section we use the above $A_\infty$ actions to state and prove
       
  1384 a gluing theorem for the blob complexes of $n$-manifolds.
       
  1385 
       
  1386 
       
  1387 \subsection{The gluing formula}
       
  1388 \label{sec:gluing-formula}%
       
  1389 Let $Y$ be an $n{-}1$-manifold and let $X$ be an $n$-manifold with a copy
       
  1390 of $Y \du -Y$ contained in its boundary.
       
  1391 Gluing the two copies of $Y$ together we obtain a new $n$-manifold $X\sgl$.
       
  1392 We wish to describe the blob complex of $X\sgl$ in terms of the blob complex
       
  1393 of $X$.
       
  1394 More precisely, we want to describe $\bc_*(X\sgl; c\sgl)$,
       
  1395 where $c\sgl \in \cC(\bd X\sgl)$,
       
  1396 in terms of the collection $\{\bc_*(X; c, \cdot, \cdot)\}$, thought of as a representation
       
  1397 of the $A_\infty$ category $\cA(Y\du-Y) \cong \cA(Y)\times \cA(Y)\op$.
       
  1398 
       
  1399 \begin{thm}
       
  1400 $\bc_*(X\sgl; c\sgl)$ is quasi-isomorphic to the the self tensor product
       
  1401 of $\{\bc_*(X; c, \cdot, \cdot)\}$ over $\cA(Y)$.
       
  1402 \end{thm}
       
  1403 
       
  1404 The proof will occupy the remainder of this section.
       
  1405 
       
  1406 \nn{...}
       
  1407 
       
  1408 \bigskip
       
  1409 
       
  1410 \nn{need to define/recall def of (self) tensor product over an $A_\infty$ category}
       
  1411 
       
  1412 
       
  1413 
   947 
  1414 
   948 
  1415 
   949 
  1416 \section{Commutative algebras as $n$-categories}
   950 \section{Commutative algebras as $n$-categories}
  1417 
   951 
  1773 
  1307 
  1774 \nn{this completes proof}
  1308 \nn{this completes proof}
  1775 
  1309 
  1776 \input{text/explicit.tex}
  1310 \input{text/explicit.tex}
  1777 
  1311 
       
  1312 \input{text/obsolete.tex}
  1778 
  1313 
  1779 % ----------------------------------------------------------------
  1314 % ----------------------------------------------------------------
  1780 %\newcommand{\urlprefix}{}
  1315 %\newcommand{\urlprefix}{}
  1781 \bibliographystyle{plain}
  1316 \bibliographystyle{plain}
  1782 %Included for winedt:
  1317 %Included for winedt: