text/gluing.tex
changeset 55 2625a6f51684
child 65 15a79fb469e1
equal deleted inserted replaced
54:ead6bc1a703f 55:2625a6f51684
       
     1 \section{Gluing - needs to be rewritten/replaced}
       
     2 \label{sec:gluing}%
       
     3 
       
     4 We now turn to establishing the gluing formula for blob homology, restated from Property \ref{property:gluing} in the Introduction
       
     5 \begin{itemize}
       
     6 %\mbox{}% <-- gets the indenting right
       
     7 \item For any $(n-1)$-manifold $Y$, the blob homology of $Y \times I$ is
       
     8 naturally an $A_\infty$ category. % We'll write $\bc_*(Y)$ for $\bc_*(Y \times I)$ below.
       
     9 
       
    10 \item For any $n$-manifold $X$, with $Y$ a codimension $0$-submanifold of its boundary, the blob homology of $X$ is naturally an
       
    11 $A_\infty$ module for $\bc_*(Y \times I)$.
       
    12 
       
    13 \item For any $n$-manifold $X$, with $Y \cup Y^{\text{op}}$ a codimension
       
    14 $0$-submanifold of its boundary, the blob homology of $X'$, obtained from
       
    15 $X$ by gluing along $Y$, is the $A_\infty$ self-tensor product of
       
    16 $\bc_*(X)$ as an $\bc_*(Y \times I)$-bimodule.
       
    17 \begin{equation*}
       
    18 \bc_*(X') \iso \bc_*(X) \Tensor^{A_\infty}_{\mathclap{\bc_*(Y \times I)}} \!\!\!\!\!\!\xymatrix{ \ar@(ru,rd)@<-1ex>[]}
       
    19 \end{equation*}
       
    20 \end{itemize}
       
    21 
       
    22 Although this gluing formula is stated in terms of $A_\infty$ categories and their (bi-)modules, it will be more natural for us to give alternative
       
    23 definitions of `topological' $A_\infty$-categories and their bimodules, explain how to translate between the `algebraic' and `topological' definitions,
       
    24 and then prove the gluing formula in the topological langauge. Section \ref{sec:topological-A-infty} below explains these definitions, and establishes
       
    25 the desired equivalence. This is quite involved, and in particular requires us to generalise the definition of blob homology to allow $A_\infty$ algebras
       
    26 as inputs, and to re-establish many of the properties of blob homology in this generality. Many readers may prefer to read the
       
    27 Definitions \ref{defn:topological-algebra} and \ref{defn:topological-module} of `topological' $A_\infty$-categories, and Definition \ref{???} of the
       
    28 self-tensor product of a `topological' $A_\infty$-bimodule, then skip to \S \ref{sec:boundary-action} and \S \ref{sec:gluing-formula} for the proofs
       
    29 of the gluing formula in the topological context.
       
    30 
       
    31 \subsection{`Topological' $A_\infty$ $n$-categories}
       
    32 \label{sec:topological-A-infty}%
       
    33 
       
    34 This section prepares the ground for establishing Property \ref{property:gluing} by defining the notion of a \emph{topological $A_\infty$-$n$-category}.
       
    35 The main result of this section is
       
    36 
       
    37 \begin{thm}
       
    38 Topological $A_\infty$-$1$-categories are equivalent to the usual notion of
       
    39 $A_\infty$-$1$-categories.
       
    40 \end{thm}
       
    41 
       
    42 Before proving this theorem, we embark upon a long string of definitions.
       
    43 For expository purposes, we begin with the $n=1$ special cases,\scott{Why are we treating the $n>1$ cases at all?} and define
       
    44 first topological $A_\infty$-algebras, then topological $A_\infty$-categories, and then topological $A_\infty$-modules over these. We then turn
       
    45 to the general $n$ case, defining topological $A_\infty$-$n$-categories and their modules.
       
    46 \nn{Something about duals?}
       
    47 \todo{Explain that we're not making contact with any previous notions for the general $n$ case?}
       
    48 \kevin{probably we should say something about the relation
       
    49 to [framed] $E_\infty$ algebras
       
    50 }
       
    51 
       
    52 \todo{}
       
    53 Various citations we might want to make:
       
    54 \begin{itemize}
       
    55 \item \cite{MR2061854} McClure and Smith's review article
       
    56 \item \cite{MR0420610} May, (inter alia, definition of $E_\infty$ operad)
       
    57 \item \cite{MR0236922,MR0420609} Boardman and Vogt
       
    58 \item \cite{MR1256989} definition of framed little-discs operad
       
    59 \end{itemize}
       
    60 
       
    61 \begin{defn}
       
    62 \label{defn:topological-algebra}%
       
    63 A ``topological $A_\infty$-algebra'' $A$ consists of the following data.
       
    64 \begin{enumerate}
       
    65 \item For each $1$-manifold $J$ diffeomorphic to the standard interval
       
    66 $I=\left[0,1\right]$, a complex of vector spaces $A(J)$.
       
    67 % either roll functoriality into the evaluation map
       
    68 \item For each pair of intervals $J,J'$ an `evaluation' chain map
       
    69 $\ev_{J \to J'} : \CD{J \to J'} \tensor A(J) \to A(J')$.
       
    70 \item For each decomposition of intervals $J = J'\cup J''$,
       
    71 a gluing map $\gl_{J',J''} : A(J') \tensor A(J'') \to A(J)$.
       
    72 % or do it as two separate pieces of data
       
    73 %\item along with an `evaluation' chain map $\ev_J : \CD{J} \tensor A(J) \to A(J)$,
       
    74 %\item for each diffeomorphism $\phi : J \to J'$, an isomorphism $A(\phi) : A(J) \isoto A(J')$,
       
    75 %\item and for each pair of intervals $J,J'$ a gluing map $\gl_{J,J'} : A(J) \tensor A(J') \to A(J \cup J')$,
       
    76 \end{enumerate}
       
    77 This data is required to satisfy the following conditions.
       
    78 \begin{itemize}
       
    79 \item The evaluation chain map is associative, in that the diagram
       
    80 \begin{equation*}
       
    81 \xymatrix{
       
    82  & \quad \mathclap{\CD{J' \to J''} \tensor \CD{J \to J'} \tensor A(J)} \quad \ar[dr]^{\id \tensor \ev_{J \to J'}} \ar[dl]_{\compose \tensor \id} & \\
       
    83 \CD{J' \to J''} \tensor A(J') \ar[dr]^{\ev_{J' \to J''}} & & \CD{J \to J''} \tensor A(J) \ar[dl]_{\ev_{J \to J''}} \\
       
    84  & A(J'') &
       
    85 }
       
    86 \end{equation*}
       
    87 commutes up to homotopy.
       
    88 Here the map $$\compose : \CD{J' \to J''} \tensor \CD{J \to J'} \to \CD{J \to J''}$$ is a composition: take products of singular chains first, then compose diffeomorphisms.
       
    89 %% or the version for separate pieces of data:
       
    90 %\item If $\phi$ is a diffeomorphism from $J$ to itself, the maps $\ev_J(\phi, -)$ and $A(\phi)$ are the same.
       
    91 %\item The evaluation chain map is associative, in that the diagram
       
    92 %\begin{equation*}
       
    93 %\xymatrix{
       
    94 %\CD{J} \tensor \CD{J} \tensor A(J) \ar[r]^{\id \tensor \ev_J} \ar[d]_{\compose \tensor \id} &
       
    95 %\CD{J} \tensor A(J) \ar[d]^{\ev_J} \\
       
    96 %\CD{J} \tensor A(J) \ar[r]_{\ev_J} &
       
    97 %A(J)
       
    98 %}
       
    99 %\end{equation*}
       
   100 %commutes. (Here the map $\compose : \CD{J} \tensor \CD{J} \to \CD{J}$ is a composition: take products of singular chains first, then use the group multiplication in $\Diff(J)$.)
       
   101 \item The gluing maps are \emph{strictly} associative. That is, given $J$, $J'$ and $J''$, the diagram
       
   102 \begin{equation*}
       
   103 \xymatrix{
       
   104 A(J) \tensor A(J') \tensor A(J'') \ar[rr]^{\gl_{J,J'} \tensor \id} \ar[d]_{\id \tensor \gl_{J',J''}} &&
       
   105 A(J \cup J') \tensor A(J'') \ar[d]^{\gl_{J \cup J', J''}} \\
       
   106 A(J) \tensor A(J' \cup J'') \ar[rr]_{\gl_{J, J' \cup J''}} &&
       
   107 A(J \cup J' \cup J'')
       
   108 }
       
   109 \end{equation*}
       
   110 commutes.
       
   111 \item The gluing and evaluation maps are compatible.
       
   112 \nn{give diagram, or just say ``in the obvious way", or refer to diagram in blob eval map section?}
       
   113 \end{itemize}
       
   114 \end{defn}
       
   115 
       
   116 \begin{rem}
       
   117 We can restrict the evaluation map to $0$-chains, and see that $J \mapsto A(J)$ and $(\phi:J \to J') \mapsto \ev_{J \to J'}(\phi, \bullet)$ together
       
   118 constitute a functor from the category of intervals and diffeomorphisms between them to the category of complexes of vector spaces.
       
   119 Further, once this functor has been specified, we only need to know how the evaluation map acts when $J = J'$.
       
   120 \end{rem}
       
   121 
       
   122 %% if we do things separately, we should say this:
       
   123 %\begin{rem}
       
   124 %Of course, the first and third pieces of data (the complexes, and the isomorphisms) together just constitute a functor from the category of
       
   125 %intervals and diffeomorphisms between them to the category of complexes of vector spaces.
       
   126 %Further, one can combine the second and third pieces of data, asking instead for a map
       
   127 %\begin{equation*}
       
   128 %\ev_{J,J'} : \CD{J \to J'} \tensor A(J) \to A(J').
       
   129 %\end{equation*}
       
   130 %(Any $k$-parameter family of diffeomorphisms in $C_k(\Diff(J \to J'))$ factors into a single diffeomorphism $J \to J'$ and a $k$-parameter family of
       
   131 %diffeomorphisms in $\CD{J'}$.)
       
   132 %\end{rem}
       
   133 
       
   134 To generalise the definition to that of a category, we simply introduce a set of objects which we call $A(pt)$. Now we associate complexes to each
       
   135 interval with boundary conditions $(J, c_-, c_+)$, with $c_-, c_+ \in A(pt)$, and only ask for gluing maps when the boundary conditions match up:
       
   136 \begin{equation*}
       
   137 \gl : A(J, c_-, c_0) \tensor A(J', c_0, c_+) \to A(J \cup J', c_-, c_+).
       
   138 \end{equation*}
       
   139 The action of diffeomorphisms (and of $k$-parameter families of diffeomorphisms) ignores the boundary conditions.
       
   140 \todo{we presumably need to say something about $\id_c \in A(J, c, c)$.}
       
   141 
       
   142 At this point we can give two motivating examples. The first is `chains of maps to $M$' for some fixed target space $M$.
       
   143 \begin{defn}
       
   144 Define the topological $A_\infty$ category $C_*(\Maps(\bullet \to M))$ by
       
   145 \begin{enumerate}
       
   146 \item $A(J) = C_*(\Maps(J \to M))$, singular chains on the space of smooth maps from $J$ to $M$,
       
   147 \item $\ev_{J,J'} : \CD{J \to J'} \tensor A(J) \to A(J')$ is the composition
       
   148 \begin{align*}
       
   149 \CD{J \to J'} \tensor C_*(\Maps(J \to M)) & \to C_*(\Diff(J \to J') \times \Maps(J \to M)) \\ & \to C_*(\Maps(J' \to M)),
       
   150 \end{align*}
       
   151 where the first map is the product of singular chains, and the second is precomposition by the inverse of a diffeomorphism,
       
   152 \item $\gl_{J,J'} : A(J) \tensor A(J')$ takes the product of singular chains, then glues maps to $M$ together.
       
   153 \end{enumerate}
       
   154 The associativity conditions are trivially satisfied.
       
   155 \end{defn}
       
   156 
       
   157 The second example is simply the blob complex of $Y \times J$, for any $n-1$ manifold $Y$. We define $A(J) = \bc_*(Y \times J)$.
       
   158 Observe $\Diff(J \to J')$ embeds into $\Diff(Y \times J \to Y \times J')$. The evaluation and gluing maps then come directly from Properties
       
   159 \ref{property:evaluation} and \ref{property:gluing-map} respectively. We'll often write $bc_*(Y)$ for this algebra.
       
   160 
       
   161 The definition of a module follows closely the definition of an algebra or category.
       
   162 \begin{defn}
       
   163 \label{defn:topological-module}%
       
   164 A topological $A_\infty$-(left-)module $M$ over a topological $A_\infty$ category $A$
       
   165 consists of the following data.
       
   166 \begin{enumerate}
       
   167 \item A functor $K \mapsto M(K)$ from $1$-manifolds diffeomorphic to the standard interval, with the upper boundary point `marked', to complexes of vector spaces.
       
   168 \item For each pair of such marked intervals,
       
   169 an `evaluation' chain map $\ev_{K\to K'} : \CD{K \to K'} \tensor M(K) \to M(K')$.
       
   170 \item For each decomposition $K = J\cup K'$ of the marked interval
       
   171 $K$ into an unmarked interval $J$ and a marked interval $K'$, a gluing map
       
   172 $\gl_{J,K'} : A(J) \tensor M(K') \to M(K)$.
       
   173 \end{enumerate}
       
   174 The above data is required to satisfy
       
   175 conditions analogous to those in Definition \ref{defn:topological-algebra}.
       
   176 \end{defn}
       
   177 
       
   178 For any manifold $X$ with $\bdy X = Y$ (or indeed just with $Y$ a codimension $0$-submanifold of $\bdy X$) we can think of $\bc_*(X)$ as
       
   179 a topological $A_\infty$ module over $\bc_*(Y)$, the topological $A_\infty$ category described above.
       
   180 For each interval $K$, we have $M(K) = \bc_*((Y \times K) \cup_Y X)$.
       
   181 (Here we glue $Y \times pt$ to $Y \subset \bdy X$, where $pt$ is the marked point of $K$.) Again, the evaluation and gluing maps come directly from Properties
       
   182 \ref{property:evaluation} and \ref{property:gluing-map} respectively.
       
   183 
       
   184 The definition of a bimodule is like the definition of a module,
       
   185 except that we have two disjoint marked intervals $K$ and $L$, one with a marked point
       
   186 on the upper boundary and the other with a marked point on the lower boundary.
       
   187 There are evaluation maps corresponding to gluing unmarked intervals
       
   188 to the unmarked ends of $K$ and $L$.
       
   189 
       
   190 Let $X$ be an $n$-manifold with a copy of $Y \du -Y$ embedded as a
       
   191 codimension-0 submanifold of $\bdy X$.
       
   192 Then the the assignment $K,L \mapsto \bc_*(X \cup_Y (Y\times K) \cup_{-Y} (-Y\times L))$ has the
       
   193 structure of a topological $A_\infty$ bimodule over $\bc_*(Y)$.
       
   194 
       
   195 Next we define the coend
       
   196 (or gluing or tensor product or self tensor product, depending on the context)
       
   197 $\gl(M)$ of a topological $A_\infty$ bimodule $M$. This will be an `initial' or `universal' object satisfying various properties.
       
   198 \begin{defn}
       
   199 We define a category $\cG(M)$. Objects consist of the following data.
       
   200 \begin{itemize}
       
   201 \item For each interval $N$ with both endpoints marked, a complex of vector spaces C(N).
       
   202 \item For each pair of intervals $N,N'$ an evaluation chain map
       
   203 $\ev_{N \to N'} : \CD{N \to N'} \tensor C(N) \to C(N')$.
       
   204 \item For each decomposition of intervals $N = K\cup L$,
       
   205 a gluing map $\gl_{K,L} : M(K,L) \to C(N)$.
       
   206 \end{itemize}
       
   207 This data must satisfy the following conditions.
       
   208 \begin{itemize}
       
   209 \item The evaluation maps are associative.
       
   210 \nn{up to homotopy?}
       
   211 \item Gluing is strictly associative.
       
   212 That is, given a decomposition $N = K\cup J\cup L$, the chain maps associated to
       
   213 $K\du J\du L \to (K\cup J)\du L \to N$ and $K\du J\du L \to K\du (J\cup L) \to N$
       
   214 agree.
       
   215 \item the gluing and evaluation maps are compatible.
       
   216 \end{itemize}
       
   217 
       
   218 A morphism $f$ between such objects $C$ and $C'$ is a chain map $f_N : C(N) \to C'(N)$ for each interval $N$ with both endpoints marked,
       
   219 satisfying the following conditions.
       
   220 \begin{itemize}
       
   221 \item For each pair of intervals $N,N'$, the diagram
       
   222 \begin{equation*}
       
   223 \xymatrix{
       
   224 \CD{N \to N'} \tensor C(N) \ar[d]_{\ev} \ar[r]^{\id \tensor f_N} & \CD{N \to N'} \tensor C'(N) \ar[d]^{\ev} \\
       
   225 C(N) \ar[r]_{f_N} & C'(N)
       
   226 }
       
   227 \end{equation*}
       
   228 commutes.
       
   229 \item For each decomposition of intervals $N = K \cup L$, the gluing map for $C'$, $\gl'_{K,L} : M(K,L) \to C'(N)$ is the composition
       
   230 $$M(K,L) \xto{\gl_{K,L}} C(N) \xto{f_N} C'(N).$$
       
   231 \end{itemize}
       
   232 \end{defn}
       
   233 
       
   234 We now define $\gl(M)$ to be an initial object in the category $\cG{M}$. This just says that for any other object $C'$ in $\cG{M}$,
       
   235 there are chain maps $f_N: \gl(M)(N) \to C'(N)$, compatible with the action of families of diffeomorphisms, so that the gluing maps $M(K,L) \to C'(N)$
       
   236 factor through the gluing maps for $\gl(M)$.
       
   237 
       
   238 We return to our two favourite examples. First, the coend of the topological $A_\infty$ category $C_*(\Maps(\bullet \to M))$ as a bimodule over itself
       
   239 is essentially $C_*(\Maps(S^1 \to M))$. \todo{}
       
   240 
       
   241 For the second example, given $X$ and $Y\du -Y \sub \bdy X$, the assignment
       
   242 $$N \mapsto \bc_*(X \cup_{Y\du -Y} (N\times Y))$$ clearly gives an object in $\cG{M}$.
       
   243 Showing that it is an initial object is the content of the gluing theorem proved below.
       
   244 
       
   245 The definitions for a topological $A_\infty$-$n$-category are very similar to the above
       
   246 $n=1$ case.
       
   247 One replaces intervals with manifolds diffeomorphic to the ball $B^n$.
       
   248 Marked points are replaced by copies of $B^{n-1}$ in $\bdy B^n$.
       
   249 
       
   250 \nn{give examples: $A(J^n) = \bc_*(Z\times J)$ and $A(J^n) = C_*(\Maps(J \to M))$.}
       
   251 
       
   252 \todo{the motivating example $C_*(\maps(X, M))$}
       
   253 
       
   254 
       
   255 
       
   256 \newcommand{\skel}[1]{\operatorname{skeleton}(#1)}
       
   257 
       
   258 Given a topological $A_\infty$-category $\cC$, we can construct an `algebraic' $A_\infty$ category $\skel{\cC}$. First, pick your
       
   259 favorite diffeomorphism $\phi: I \cup I \to I$.
       
   260 \begin{defn}
       
   261 We'll write $\skel{\cC} = (A, m_k)$. Define $A = \cC(I)$, and $m_2 : A \tensor A \to A$ by
       
   262 \begin{equation*}
       
   263 m_2 \cC(I) \tensor \cC(I) \xrightarrow{\gl_{I,I}} \cC(I \cup I) \xrightarrow{\cC(\phi)} \cC(I).
       
   264 \end{equation*}
       
   265 Next, we define all the `higher associators' $m_k$ by
       
   266 \todo{}
       
   267 \end{defn}
       
   268 
       
   269 Give an `algebraic' $A_\infty$ category $(A, m_k)$, we can construct a topological $A_\infty$-category, which we call $\bc_*^A$. You should
       
   270 think of this as a generalisation of the blob complex, although the construction we give will \emph{not} specialise to exactly the usual definition
       
   271 in the case the $A$ is actually an associative category.
       
   272 
       
   273 We'll first define $\cT_{k,n}$ to be the set of planar forests consisting of $n-k$ trees, with a total of $n$ leaves. Thus
       
   274 \todo{$\cT_{0,n}$ has 1 element, with $n$ vertical lines, $\cT_{1,n}$ has $n-1$ elements, each with a single trivalent vertex, $\cT_{2,n}$ etc...}
       
   275 \begin{align*}
       
   276 \end{align*}
       
   277 
       
   278 \begin{defn}
       
   279 The topological $A_\infty$ category $\bc_*^A$ is doubly graded, by `blob degree' and `internal degree'. We'll write $\bc_k^A$ for the blob degree $k$ piece.
       
   280 The homological degree of an element $a \in \bc_*^A(J)$
       
   281 is the sum of the blob degree and the internal degree.
       
   282 
       
   283 We first define $\bc_0^A(J)$ as a vector space by
       
   284 \begin{equation*}
       
   285 \bc_0^A(J) = \DirectSum_{\substack{\{J_i\}_{i=1}^n \\ \mathclap{\bigcup_i J_i = J}}} \Tensor_{i=1}^n (\CD{J_i \to I} \tensor A).
       
   286 \end{equation*}
       
   287 (That is, for each division of $J$ into finitely many subintervals,
       
   288 we have the tensor product of chains of diffeomorphisms from each subinterval to the standard interval,
       
   289 and a copy of $A$ for each subinterval.)
       
   290 The internal degree of an element $(f_1 \tensor a_1, \ldots, f_n \tensor a_n)$ is the sum of the dimensions of the singular chains
       
   291 plus the sum of the homological degrees of the elements of $A$.
       
   292 The differential is defined just by the graded Leibniz rule and the differentials on $\CD{J_i \to I}$ and on $A$.
       
   293 
       
   294 Next,
       
   295 \begin{equation*}
       
   296 \bc_1^A(J) = \DirectSum_{\substack{\{J_i\}_{i=1}^n \\ \mathclap{\bigcup_i J_i = J}}} \DirectSum_{T \in \cT_{1,n}} \Tensor_{i=1}^n (\CD{J_i \to I} \tensor A).
       
   297 \end{equation*}
       
   298 \end{defn}
       
   299 
       
   300 \begin{figure}[!ht]
       
   301 \begin{equation*}
       
   302 \mathfig{0.7}{associahedron/A4-vertices}
       
   303 \end{equation*}
       
   304 \caption{The vertices of the $k$-dimensional associahedron are indexed by binary trees on $k+2$ leaves.}
       
   305 \label{fig:A4-vertices}
       
   306 \end{figure}
       
   307 
       
   308 \begin{figure}[!ht]
       
   309 \begin{equation*}
       
   310 \mathfig{0.7}{associahedron/A4-faces}
       
   311 \end{equation*}
       
   312 \caption{The faces of the $k$-dimensional associahedron are indexed by trees with $2$ vertices on $k+2$ leaves.}
       
   313 \label{fig:A4-vertices}
       
   314 \end{figure}
       
   315 
       
   316 \newcommand{\tm}{\widetilde{m}}
       
   317 
       
   318 Let $\tm_1(a) = a$.
       
   319 
       
   320 We now define $\bdy(\tm_k(a_1 \tensor \cdots \tensor a_k))$, first giving an opaque formula, then explaining the combinatorics behind it.
       
   321 \begin{align}
       
   322 \notag \bdy(\tm_k(a_1 & \tensor \cdots \tensor a_k)) = \\
       
   323 \label{eq:bdy-tm-k-1}   & \phantom{+} \sum_{\ell'=0}^{k-1} (-1)^{\abs{\tm_k}+\sum_{j=1}^{\ell'} \abs{a_j}} \tm_k(a_1 \tensor \cdots \tensor \bdy a_{\ell'+1} \tensor \cdots \tensor a_k) + \\
       
   324 \label{eq:bdy-tm-k-2}   &          +  \sum_{\ell=1}^{k-1} \tm_{\ell}(a_1 \tensor \cdots \tensor a_{\ell}) \tensor \tm_{k-\ell}(a_{\ell+1} \tensor \cdots \tensor a_k) + \\
       
   325 \label{eq:bdy-tm-k-3}   &          +  \sum_{\ell=1}^{k-1} \sum_{\ell'=0}^{l-1} (-1)^{\abs{\tm_k}+\sum_{j=1}^{\ell'} \abs{a_j}} \tm_{\ell}(a_1 \tensor \cdots \tensor m_{k-\ell + 1}(a_{\ell' + 1} \tensor \cdots \tensor a_{\ell' + k - \ell + 1}) \tensor \cdots \tensor a_k)
       
   326 \end{align}
       
   327 The first set of terms in $\bdy(\tm_k(a_1 \tensor \cdots \tensor a_k))$ just have $\bdy$ acting on each argument $a_i$.
       
   328 The terms appearing in \eqref{eq:bdy-tm-k-2} and \eqref{eq:bdy-tm-k-3} are indexed by trees with $2$ vertices on $k+1$ leaves.
       
   329 Note here that we have one more leaf than there arguments of $\tm_k$.
       
   330 (See Figure \ref{fig:A4-vertices}, in which the rightmost branches are helpfully drawn in red.)
       
   331 We will treat the vertices which involve a rightmost (red) branch differently from the vertices which only involve the first $k$ leaves.
       
   332 The terms in \eqref{eq:bdy-tm-k-2} arise in the cases in which both
       
   333 vertices are rightmost, and the corresponding term in $\bdy(\tm_k(a_1 \tensor \cdots \tensor a_k))$ is a tensor product of the form
       
   334 $$\tm_{\ell}(a_1 \tensor \cdots \tensor a_{\ell}) \tensor \tm_{k-\ell}(a_{\ell+1} \tensor \cdots \tensor a_k)$$
       
   335 where $\ell + 1$ and $k - \ell + 1$ are the number of branches entering the vertices.
       
   336 If only one vertex is rightmost, we get the term $$\tm_{\ell}(a_1 \tensor \cdots \tensor m_{k-\ell+1}(a_{\ell' + 1} \tensor \cdots \tensor a_{\ell' + k - \ell}) \tensor \cdots \tensor a_k)$$
       
   337 in \eqref{eq:bdy-tm-k-3},
       
   338 where again $\ell + 1$ is the number of branches entering the rightmost vertex, $k-\ell+1$ is the number of branches entering the other vertex, and $\ell'$ is the number of edges meeting the rightmost vertex which start to the left of the other vertex.
       
   339 For example, we have
       
   340 \begin{align*}
       
   341 \bdy(\tm_2(a \tensor b)) & = \left(\tm_2(\bdy a \tensor b) + (-1)^{\abs{a}} \tm_2(a \tensor \bdy b)\right) + \\
       
   342                          & \qquad - a \tensor b + m_2(a \tensor b) \\
       
   343 \bdy(\tm_3(a \tensor b \tensor c)) & = \left(- \tm_3(\bdy a \tensor b \tensor c) + (-1)^{\abs{a} + 1} \tm_3(a \tensor \bdy b \tensor c) + (-1)^{\abs{a} + \abs{b} + 1} \tm_3(a \tensor b \tensor \bdy c)\right) + \\
       
   344                                    & \qquad + \left(- \tm_2(a \tensor b) \tensor c + a \tensor \tm_2(b \tensor c)\right) + \\
       
   345                                    & \qquad + \left(- \tm_2(m_2(a \tensor b) \tensor c) + \tm_2(a, m_2(b \tensor c)) + m_3(a \tensor b \tensor c)\right)
       
   346 \end{align*}
       
   347 \begin{align*}
       
   348 \bdy(& \tm_4(a \tensor b \tensor c \tensor d)) = \left(\tm_4(\bdy a \tensor b \tensor c \tensor d) + \cdots + \tm_4(a \tensor b \tensor c \tensor \bdy d)\right) + \\
       
   349                                              & + \left(\tm_3(a \tensor b \tensor c) \tensor d + \tm_2(a \tensor b) \tensor \tm_2(c \tensor d) + a \tensor \tm_3(b \tensor c \tensor d)\right) + \\
       
   350                                              & + \left(\tm_3(m_2(a \tensor b) \tensor c \tensor d) + \tm_3(a \tensor m_2(b \tensor c) \tensor d) + \tm_3(a \tensor b \tensor m_2(c \tensor d))\right. + \\
       
   351                                              & + \left.\tm_2(m_3(a \tensor b \tensor c) \tensor d) + \tm_2(a \tensor m_3(b \tensor c \tensor d)) + m_4(a \tensor b \tensor c \tensor d)\right) \\
       
   352 \end{align*}
       
   353 See Figure \ref{fig:A4-terms}, comparing it against Figure \ref{fig:A4-faces}, to see this illustrated in the case $k=4$. There the $3$ faces closest
       
   354 to the top of the diagram have two rightmost vertices, while the other $6$ faces have only one.
       
   355 
       
   356 \begin{figure}[!ht]
       
   357 \begin{equation*}
       
   358 \mathfig{1.0}{associahedron/A4-terms}
       
   359 \end{equation*}
       
   360 \caption{The terms of $\bdy(\tm_k(a_1 \tensor \cdots \tensor a_k))$ correspond to the faces of the $k-1$ dimensional associahedron.}
       
   361 \label{fig:A4-terms}
       
   362 \end{figure}
       
   363 
       
   364 \begin{lem}
       
   365 This definition actually results in a chain complex, that is $\bdy^2 = 0$.
       
   366 \end{lem}
       
   367 \begin{proof}
       
   368 \newcommand{\T}{\text{---}}
       
   369 \newcommand{\ssum}[1]{{\sum}^{(#1)}}
       
   370 For the duration of this proof, inside a summation over variables $l_1, \ldots, l_m$, an expression with $m$ dashes will be interpreted
       
   371 by replacing each dash with contiguous factors from $a_1 \tensor \cdots \tensor a_k$, so the first dash takes the first $l_1$ factors, the second
       
   372 takes the next $l_2$ factors, and so on. Further, we'll write $\ssum{m}$ for $\sum_{\sum_{i=1}^m l_i = k}$.
       
   373 In this notation, the formula for the differential becomes
       
   374 \begin{align}
       
   375 \notag
       
   376 \bdy \tm(\T) & = \ssum{2} \tm(\T) \tensor \tm(\T) \times \sigma_{0;l_1,l_2} + \ssum{3} \tm(\T \tensor m(\T) \tensor \T) \times \tau_{0;l_1,l_2,l_3} \\
       
   377 \intertext{and we calculate}
       
   378 \notag
       
   379 \bdy^2 \tm(\T) & = \ssum{2} \bdy \tm(\T) \tensor \tm(\T) \times \sigma_{0;l_1,l_2} \\
       
   380 \notag         & \qquad + \ssum{2} \tm(\T) \tensor \bdy \tm(\T) \times \sigma_{0;l_1,l_2} \\
       
   381 \notag         & \qquad + \ssum{3} \bdy \tm(\T \tensor m(\T) \tensor \T) \times \tau_{0;l_1,l_2,l_3} \\
       
   382 \label{eq:d21} & = \ssum{3} \tm(\T) \tensor \tm(\T) \tensor \tm(\T) \times \sigma_{0;l_1+l_2,l_3} \sigma_{0;l_1,l_2} \\
       
   383 \label{eq:d22} & \qquad + \ssum{4} \tm(\T \tensor m(\T) \tensor \T) \tensor \tm(\T) \times \sigma_{0;l_1+l_2+l_3,l_4} \tau_{0;l_1,l_2,l_3} \\
       
   384 \label{eq:d23} & \qquad + \ssum{3} \tm(\T) \tensor \tm(\T) \tensor \tm(\T) \times \sigma_{0;l_1,l_2+l_3} \sigma_{l_1;l_2,l_3} \\
       
   385 \label{eq:d24} & \qquad + \ssum{4} \tm(\T) \tensor \tm(\T \tensor m(\T) \tensor \T) \times \sigma_{0;l_1,l_2+l_3+l_4} \tau_{l_1;l_2,l_3,l_4} \\
       
   386 \label{eq:d25} & \qquad + \ssum{4} \tm(\T \tensor m(\T) \tensor \T) \tensor \tm(\T) \times \tau_{0;l_1,l_2,l_3+l_4} ??? \\
       
   387 \label{eq:d26} & \qquad + \ssum{4} \tm(\T) \tensor \tm(\T \tensor m(\T) \tensor \T) \times \tau_{0;l_1+l_2,l_3,l_4} \sigma_{0;l_1,l_2} \\
       
   388 \label{eq:d27} & \qquad + \ssum{5} \tm(\T \tensor m(\T) \tensor \T \tensor m(\T) \tensor \T) \times \tau_{0;l_1+l_2+l_3,l_4,l_5} \tau_{0;l_1,l_2,l_3}  \\
       
   389 \label{eq:d28} & \qquad + \ssum{5} \tm(\T \tensor m(\T \tensor m(\T) \tensor \T) \tensor \T) \times \tau_{0;l_1,l_2+l_3+l_4,l_5} ??? \\
       
   390 \label{eq:d29} & \qquad + \ssum{5} \tm(\T \tensor m(\T) \tensor \T \tensor m(\T) \tensor \T) \times \tau_{0;l_1,l_2,l_3+l_4+l_5} ???
       
   391 \end{align}
       
   392 Now, we see the the expressions on the right hand side of line \eqref{eq:d21} and those on \eqref{eq:d23} cancel. Similarly, line \eqref{eq:d22} cancels
       
   393 with \eqref{eq:d25}, \eqref{eq:d24} with \eqref{eq:d26}, and \eqref{eq:d27} with \eqref{eq:d29}. Finally, we need to see that \eqref{eq:d28} gives $0$,
       
   394 by the usual relations between the $m_k$ in an $A_\infty$ algebra.
       
   395 \end{proof}
       
   396 
       
   397 \nn{Need to let the input $n$-category $C$ be a graded thing (e.g. DG
       
   398 $n$-category or $A_\infty$ $n$-category). DG $n$-category case is pretty
       
   399 easy, I think, so maybe it should be done earlier??}
       
   400 
       
   401 \bigskip
       
   402 
       
   403 Outline:
       
   404 \begin{itemize}
       
   405 \item recall defs of $A_\infty$ category (1-category only), modules, (self-) tensor product.
       
   406 use graphical/tree point of view, rather than following Keller exactly
       
   407 \item define blob complex in $A_\infty$ case; fat mapping cones?  tree decoration?
       
   408 \item topological $A_\infty$ cat def (maybe this should go first); also modules gluing
       
   409 \item motivating example: $C_*(\maps(X, M))$
       
   410 \item maybe incorporate dual point of view (for $n=1$), where points get
       
   411 object labels and intervals get 1-morphism labels
       
   412 \end{itemize}
       
   413 
       
   414 
       
   415 \subsection{$A_\infty$ action on the boundary}
       
   416 \label{sec:boundary-action}%
       
   417 Let $Y$ be an $n{-}1$-manifold.
       
   418 The collection of complexes $\{\bc_*(Y\times I; a, b)\}$, where $a, b \in \cC(Y)$ are boundary
       
   419 conditions on $\bd(Y\times I) = Y\times \{0\} \cup Y\times\{1\}$, has the structure
       
   420 of an $A_\infty$ category.
       
   421 
       
   422 Composition of morphisms (multiplication) depends of a choice of homeomorphism
       
   423 $I\cup I \cong I$.  Given this choice, gluing gives a map
       
   424 \eq{
       
   425     \bc_*(Y\times I; a, b) \otimes \bc_*(Y\times I; b, c) \to \bc_*(Y\times (I\cup I); a, c)
       
   426             \cong \bc_*(Y\times I; a, c)
       
   427 }
       
   428 Using (\ref{CDprop}) and the inclusion $\Diff(I) \sub \Diff(Y\times I)$ gives the various
       
   429 higher associators of the $A_\infty$ structure, more or less canonically.
       
   430 
       
   431 \nn{is this obvious?  does more need to be said?}
       
   432 
       
   433 Let $\cA(Y)$ denote the $A_\infty$ category $\bc_*(Y\times I; \cdot, \cdot)$.
       
   434 
       
   435 Similarly, if $Y \sub \bd X$, a choice of collaring homeomorphism
       
   436 $(Y\times I) \cup_Y X \cong X$ gives the collection of complexes $\bc_*(X; r, a)$
       
   437 (variable $a \in \cC(Y)$; fixed $r \in \cC(\bd X \setmin Y)$) the structure of a representation of the
       
   438 $A_\infty$ category $\{\bc_*(Y\times I; \cdot, \cdot)\}$.
       
   439 Again the higher associators come from the action of $\Diff(I)$ on a collar neighborhood
       
   440 of $Y$ in $X$.
       
   441 
       
   442 In the next section we use the above $A_\infty$ actions to state and prove
       
   443 a gluing theorem for the blob complexes of $n$-manifolds.
       
   444 
       
   445 
       
   446 \subsection{The gluing formula}
       
   447 \label{sec:gluing-formula}%
       
   448 Let $Y$ be an $n{-}1$-manifold and let $X$ be an $n$-manifold with a copy
       
   449 of $Y \du -Y$ contained in its boundary.
       
   450 Gluing the two copies of $Y$ together we obtain a new $n$-manifold $X\sgl$.
       
   451 We wish to describe the blob complex of $X\sgl$ in terms of the blob complex
       
   452 of $X$.
       
   453 More precisely, we want to describe $\bc_*(X\sgl; c\sgl)$,
       
   454 where $c\sgl \in \cC(\bd X\sgl)$,
       
   455 in terms of the collection $\{\bc_*(X; c, \cdot, \cdot)\}$, thought of as a representation
       
   456 of the $A_\infty$ category $\cA(Y\du-Y) \cong \cA(Y)\times \cA(Y)\op$.
       
   457 
       
   458 \begin{thm}
       
   459 $\bc_*(X\sgl; c\sgl)$ is quasi-isomorphic to the the self tensor product
       
   460 of $\{\bc_*(X; c, \cdot, \cdot)\}$ over $\cA(Y)$.
       
   461 \end{thm}
       
   462 
       
   463 The proof will occupy the remainder of this section.
       
   464 
       
   465 \nn{...}
       
   466 
       
   467 \bigskip
       
   468 
       
   469 \nn{need to define/recall def of (self) tensor product over an $A_\infty$ category}
       
   470