pnas/pnas.tex
changeset 591 294c6b2ab723
parent 587 38ec3d05d0d8
parent 590 6de8871d5786
child 594 6945422bed13
equal deleted inserted replaced
587:38ec3d05d0d8 591:294c6b2ab723
   506 natural with respect to homeomorphisms, and associative with respect to iterated gluings.
   506 natural with respect to homeomorphisms, and associative with respect to iterated gluings.
   507 \end{property}
   507 \end{property}
   508 
   508 
   509 \begin{property}[Contractibility]
   509 \begin{property}[Contractibility]
   510 \label{property:contractibility}%
   510 \label{property:contractibility}%
   511 With field coefficients, the blob complex on an $n$-ball is contractible in the sense 
   511 The blob complex on an $n$-ball is contractible in the sense 
   512 that it is homotopic to its $0$-th homology.
   512 that it is homotopic to its $0$-th homology, and this is just the vector space associated to the ball by the $n$-category.
   513 Moreover, the $0$-th homology of balls can be canonically identified with the vector spaces 
   513 \begin{equation*}
   514 associated by the system of fields $\cF$ to balls.
   514 \xymatrix{\bc_*(B^n;\cC) \ar[r]^(0.4){\iso}_(0.4){\text{qi}} & H_0(\bc_*(B^n;\cC)) \ar[r]^(0.6)\iso & \cC(B^n)}
   515 \begin{equation*}
       
   516 \xymatrix{\bc_*(B^n;\cF) \ar[r]^(0.4){\iso}_(0.4){\text{qi}} & H_0(\bc_*(B^n;\cF)) \ar[r]^(0.6)\iso & A_\cF(B^n)}
       
   517 \end{equation*}
   515 \end{equation*}
   518 \end{property}
   516 \end{property}
       
   517 \nn{maybe should say something about the $A_\infty$ case}
   519 
   518 
   520 \begin{proof}(Sketch)
   519 \begin{proof}(Sketch)
   521 For $k\ge 1$, the contracting homotopy sends a $k$-blob diagram to the $(k{+}1)$-blob diagram
   520 For $k\ge 1$, the contracting homotopy sends a $k$-blob diagram to the $(k{+}1)$-blob diagram
   522 obtained by adding an outer $(k{+}1)$-st blob consisting of all $B^n$.
   521 obtained by adding an outer $(k{+}1)$-st blob consisting of all $B^n$.
   523 For $k=0$ we choose a splitting $s: H_0(\bc_*(B^n)) \to \bc_0(B^n)$ and send 
   522 For $k=0$ we choose a splitting $s: H_0(\bc_*(B^n)) \to \bc_0(B^n)$ and send 
   524 $x\in \bc_0(B^n)$ to $x - s([x])$, where $[x]$ denotes the image of $x$ in $H_0(\bc_*(B^n))$.
   523 $x\in \bc_0(B^n)$ to $x - s([x])$, where $[x]$ denotes the image of $x$ in $H_0(\bc_*(B^n))$.
   525 \end{proof}
   524 \end{proof}
   526 
   525 
   527 
       
   528 \subsection{Specializations}
   526 \subsection{Specializations}
   529 \label{sec:specializations}
   527 \label{sec:specializations}
   530 
   528 
   531 The blob complex has two important special cases.
   529 The blob complex has two important special cases.
   532 
   530 
   533 \begin{thm}[Skein modules]
   531 \begin{thm}[Skein modules]
   534 \label{thm:skein-modules}
   532 \label{thm:skein-modules}
       
   533 \nn{Plain n-categories only?}
   535 The $0$-th blob homology of $X$ is the usual 
   534 The $0$-th blob homology of $X$ is the usual 
   536 (dual) TQFT Hilbert space (a.k.a.\ skein module) associated to $X$
   535 (dual) TQFT Hilbert space (a.k.a.\ skein module) associated to $X$
   537 by $\cF$.
   536 by $\cC$.
   538 \begin{equation*}
   537 \begin{equation*}
   539 H_0(\bc_*(X;\cF)) \iso A_{\cF}(X)
   538 H_0(\bc_*(X;\cC)) \iso A_{\cC}(X)
   540 \end{equation*}
   539 \end{equation*}
   541 \end{thm}
   540 \end{thm}
       
   541 This follows from the fact that the $0$-th homology of a homotopy colimit of \todo{something plain} is the usual colimit, or directly from the explicit description of the blob complex.
   542 
   542 
   543 \begin{thm}[Hochschild homology when $X=S^1$]
   543 \begin{thm}[Hochschild homology when $X=S^1$]
   544 \label{thm:hochschild}
   544 \label{thm:hochschild}
   545 The blob complex for a $1$-category $\cC$ on the circle is
   545 The blob complex for a $1$-category $\cC$ on the circle is
   546 quasi-isomorphic to the Hochschild complex.
   546 quasi-isomorphic to the Hochschild complex.