text/a_inf_blob.tex
changeset 908 33404cea7dd3
parent 907 fcd380e21e7c
child 911 084156aaee2f
equal deleted inserted replaced
907:fcd380e21e7c 908:33404cea7dd3
   269 A fiber bundle $F\to E\to Y$ gives an example of a $k$-category over $Y$:
   269 A fiber bundle $F\to E\to Y$ gives an example of a $k$-category over $Y$:
   270 assign to $p:D\to Y$ the blob complex $\bc_*(p^*(E))$, when $\dim(D) = k$,
   270 assign to $p:D\to Y$ the blob complex $\bc_*(p^*(E))$, when $\dim(D) = k$,
   271 or the fields $\cE(p^*(E))$, when $\dim(D) < k$.
   271 or the fields $\cE(p^*(E))$, when $\dim(D) < k$.
   272 (Here $p^*(E)$ denotes the pull-back bundle over $D$.)
   272 (Here $p^*(E)$ denotes the pull-back bundle over $D$.)
   273 Let $\cF_E$ denote this $k$-category over $Y$.
   273 Let $\cF_E$ denote this $k$-category over $Y$.
   274 We can adapt the homotopy colimit construction (based decompositions of $Y$ into balls) to
   274 We can adapt the homotopy colimit construction (based on decompositions of $Y$ into balls) to
   275 get a chain complex $\cl{\cF_E}(Y)$.
   275 get a chain complex $\cl{\cF_E}(Y)$.
   276 
   276 
   277 \begin{thm}
   277 \begin{thm}
   278 Let $F \to E \to Y$ be a fiber bundle and let $\cF_E$ be the $k$-category over $Y$ defined above.
   278 Let $F \to E \to Y$ be a fiber bundle and let $\cF_E$ be the $k$-category over $Y$ defined above.
   279 Then
   279 Then
   289 
   289 
   290 As before, we define a map
   290 As before, we define a map
   291 \[
   291 \[
   292 	\psi: \cl{\cF_E}(Y) \to \bc_*(E) .
   292 	\psi: \cl{\cF_E}(Y) \to \bc_*(E) .
   293 \]
   293 \]
   294 0-simplices of the homotopy colimit $\cl{\cF_E}(Y)$ are glued up to give an element of $\bc_*(E)$.
   294 The 0-simplices of the homotopy colimit $\cl{\cF_E}(Y)$ are glued up to give an element of $\bc_*(E)$.
   295 Simplices of positive degree are sent to zero.
   295 Simplices of positive degree are sent to zero.
   296 
   296 
   297 Let $G_* \sub \bc_*(E)$ be the image of $\psi$.
   297 Let $G_* \sub \bc_*(E)$ be the image of $\psi$.
   298 By Lemma \ref{thm:small-blobs}, $\bc_*(Y\times F; \cE)$ 
   298 By Lemma \ref{thm:small-blobs}, $\bc_*(Y\times F; \cE)$ 
   299 is homotopic to a subcomplex of $G_*$.
   299 is homotopic to a subcomplex of $G_*$.