text/obsolete/gluing.tex
changeset 134 395bd663e20d
parent 113 638be64bd329
child 138 62e8cc479953
equal deleted inserted replaced
133:7a880cdaac70 134:395bd663e20d
       
     1 %!TEX root = ../blob1.tex
       
     2 
       
     3 \section{Gluing - needs to be rewritten/replaced}
       
     4 \label{sec:gluing}%
       
     5 
       
     6 \nn{*** this section is now obsolete; should be removed soon}
       
     7 
       
     8 We now turn to establishing the gluing formula for blob homology, restated from Property \ref{property:gluing} in the Introduction
       
     9 \begin{itemize}
       
    10 %\mbox{}% <-- gets the indenting right
       
    11 \item For any $(n-1)$-manifold $Y$, the blob homology of $Y \times I$ is
       
    12 naturally an $A_\infty$ category. % We'll write $\bc_*(Y)$ for $\bc_*(Y \times I)$ below.
       
    13 
       
    14 \item For any $n$-manifold $X$, with $Y$ a codimension $0$-submanifold of its boundary, the blob homology of $X$ is naturally an
       
    15 $A_\infty$ module for $\bc_*(Y \times I)$.
       
    16 
       
    17 \item For any $n$-manifold $X$, with $Y \cup Y^{\text{op}}$ a codimension
       
    18 $0$-submanifold of its boundary, the blob homology of $X'$, obtained from
       
    19 $X$ by gluing along $Y$, is the $A_\infty$ self-tensor product of
       
    20 $\bc_*(X)$ as an $\bc_*(Y \times I)$-bimodule.
       
    21 \begin{equation*}
       
    22 \bc_*(X') \iso \bc_*(X) \Tensor^{A_\infty}_{\mathclap{\bc_*(Y \times I)}} \!\!\!\!\!\!\xymatrix{ \ar@(ru,rd)@<-1ex>[]}
       
    23 \end{equation*}
       
    24 \end{itemize}
       
    25 
       
    26 Although this gluing formula is stated in terms of $A_\infty$ categories and their (bi-)modules, it will be more natural for us to give alternative
       
    27 definitions of `topological' $A_\infty$-categories and their bimodules, explain how to translate between the `algebraic' and `topological' definitions,
       
    28 and then prove the gluing formula in the topological langauge. Section \ref{sec:topological-A-infty} below explains these definitions, and establishes
       
    29 the desired equivalence. This is quite involved, and in particular requires us to generalise the definition of blob homology to allow $A_\infty$ algebras
       
    30 as inputs, and to re-establish many of the properties of blob homology in this generality. Many readers may prefer to read the
       
    31 Definitions \ref{defn:topological-algebra} and \ref{defn:topological-module} of `topological' $A_\infty$-categories, and Definition \ref{???} of the
       
    32 self-tensor product of a `topological' $A_\infty$-bimodule, then skip to \S \ref{sec:boundary-action} and \S \ref{sec:gluing-formula} for the proofs
       
    33 of the gluing formula in the topological context.
       
    34 
       
    35 \subsection{`Topological' $A_\infty$ $n$-categories}
       
    36 \label{sec:topological-A-infty}%
       
    37 
       
    38 This section prepares the ground for establishing Property \ref{property:gluing} by defining the notion of a \emph{topological $A_\infty$-$n$-category}.
       
    39 The main result of this section is
       
    40 
       
    41 \begin{thm}
       
    42 Topological $A_\infty$-$1$-categories are equivalent to the usual notion of
       
    43 $A_\infty$-$1$-categories.
       
    44 \end{thm}
       
    45 
       
    46 Before proving this theorem, we embark upon a long string of definitions.
       
    47 For expository purposes, we begin with the $n=1$ special cases,
       
    48 and define
       
    49 first topological $A_\infty$-algebras, then topological $A_\infty$-categories, and then topological $A_\infty$-modules over these. We then turn
       
    50 to the general $n$ case, defining topological $A_\infty$-$n$-categories and their modules.
       
    51 \nn{Something about duals?}
       
    52 \todo{Explain that we're not making contact with any previous notions for the general $n$ case?}
       
    53 \nn{probably we should say something about the relation
       
    54 to [framed] $E_\infty$ algebras
       
    55 }
       
    56 
       
    57 \todo{}
       
    58 Various citations we might want to make:
       
    59 \begin{itemize}
       
    60 \item \cite{MR2061854} McClure and Smith's review article
       
    61 \item \cite{MR0420610} May, (inter alia, definition of $E_\infty$ operad)
       
    62 \item \cite{MR0236922,MR0420609} Boardman and Vogt
       
    63 \item \cite{MR1256989} definition of framed little-discs operad
       
    64 \end{itemize}
       
    65 
       
    66 \begin{defn}
       
    67 \label{defn:topological-algebra}%
       
    68 A ``topological $A_\infty$-algebra'' $A$ consists of the following data.
       
    69 \begin{enumerate}
       
    70 \item For each $1$-manifold $J$ diffeomorphic to the standard interval
       
    71 $I=\left[0,1\right]$, a complex of vector spaces $A(J)$.
       
    72 % either roll functoriality into the evaluation map
       
    73 \item For each pair of intervals $J,J'$ an `evaluation' chain map
       
    74 $\ev_{J \to J'} : \CD{J \to J'} \tensor A(J) \to A(J')$.
       
    75 \item For each decomposition of intervals $J = J'\cup J''$,
       
    76 a gluing map $\gl_{J',J''} : A(J') \tensor A(J'') \to A(J)$.
       
    77 % or do it as two separate pieces of data
       
    78 %\item along with an `evaluation' chain map $\ev_J : \CD{J} \tensor A(J) \to A(J)$,
       
    79 %\item for each diffeomorphism $\phi : J \to J'$, an isomorphism $A(\phi) : A(J) \isoto A(J')$,
       
    80 %\item and for each pair of intervals $J,J'$ a gluing map $\gl_{J,J'} : A(J) \tensor A(J') \to A(J \cup J')$,
       
    81 \end{enumerate}
       
    82 This data is required to satisfy the following conditions.
       
    83 \begin{itemize}
       
    84 \item The evaluation chain map is associative, in that the diagram
       
    85 \begin{equation*}
       
    86 \xymatrix{
       
    87  & \quad \mathclap{\CD{J' \to J''} \tensor \CD{J \to J'} \tensor A(J)} \quad \ar[dr]^{\id \tensor \ev_{J \to J'}} \ar[dl]_{\compose \tensor \id} & \\
       
    88 \CD{J' \to J''} \tensor A(J') \ar[dr]^{\ev_{J' \to J''}} & & \CD{J \to J''} \tensor A(J) \ar[dl]_{\ev_{J \to J''}} \\
       
    89  & A(J'') &
       
    90 }
       
    91 \end{equation*}
       
    92 commutes up to homotopy.
       
    93 Here the map $$\compose : \CD{J' \to J''} \tensor \CD{J \to J'} \to \CD{J \to J''}$$ is a composition: take products of singular chains first, then compose diffeomorphisms.
       
    94 %% or the version for separate pieces of data:
       
    95 %\item If $\phi$ is a diffeomorphism from $J$ to itself, the maps $\ev_J(\phi, -)$ and $A(\phi)$ are the same.
       
    96 %\item The evaluation chain map is associative, in that the diagram
       
    97 %\begin{equation*}
       
    98 %\xymatrix{
       
    99 %\CD{J} \tensor \CD{J} \tensor A(J) \ar[r]^{\id \tensor \ev_J} \ar[d]_{\compose \tensor \id} &
       
   100 %\CD{J} \tensor A(J) \ar[d]^{\ev_J} \\
       
   101 %\CD{J} \tensor A(J) \ar[r]_{\ev_J} &
       
   102 %A(J)
       
   103 %}
       
   104 %\end{equation*}
       
   105 %commutes. (Here the map $\compose : \CD{J} \tensor \CD{J} \to \CD{J}$ is a composition: take products of singular chains first, then use the group multiplication in $\Diff(J)$.)
       
   106 \item The gluing maps are \emph{strictly} associative. That is, given $J$, $J'$ and $J''$, the diagram
       
   107 \begin{equation*}
       
   108 \xymatrix{
       
   109 A(J) \tensor A(J') \tensor A(J'') \ar[rr]^{\gl_{J,J'} \tensor \id} \ar[d]_{\id \tensor \gl_{J',J''}} &&
       
   110 A(J \cup J') \tensor A(J'') \ar[d]^{\gl_{J \cup J', J''}} \\
       
   111 A(J) \tensor A(J' \cup J'') \ar[rr]_{\gl_{J, J' \cup J''}} &&
       
   112 A(J \cup J' \cup J'')
       
   113 }
       
   114 \end{equation*}
       
   115 commutes.
       
   116 \item The gluing and evaluation maps are compatible.
       
   117 \nn{give diagram, or just say ``in the obvious way", or refer to diagram in blob eval map section?}
       
   118 \end{itemize}
       
   119 \end{defn}
       
   120 
       
   121 \begin{rem}
       
   122 We can restrict the evaluation map to $0$-chains, and see that $J \mapsto A(J)$ and $(\phi:J \to J') \mapsto \ev_{J \to J'}(\phi, \bullet)$ together
       
   123 constitute a functor from the category of intervals and diffeomorphisms between them to the category of complexes of vector spaces.
       
   124 Further, once this functor has been specified, we only need to know how the evaluation map acts when $J = J'$.
       
   125 \end{rem}
       
   126 
       
   127 %% if we do things separately, we should say this:
       
   128 %\begin{rem}
       
   129 %Of course, the first and third pieces of data (the complexes, and the isomorphisms) together just constitute a functor from the category of
       
   130 %intervals and diffeomorphisms between them to the category of complexes of vector spaces.
       
   131 %Further, one can combine the second and third pieces of data, asking instead for a map
       
   132 %\begin{equation*}
       
   133 %\ev_{J,J'} : \CD{J \to J'} \tensor A(J) \to A(J').
       
   134 %\end{equation*}
       
   135 %(Any $k$-parameter family of diffeomorphisms in $C_k(\Diff(J \to J'))$ factors into a single diffeomorphism $J \to J'$ and a $k$-parameter family of
       
   136 %diffeomorphisms in $\CD{J'}$.)
       
   137 %\end{rem}
       
   138 
       
   139 To generalise the definition to that of a category, we simply introduce a set of objects which we call $A(pt)$. Now we associate complexes to each
       
   140 interval with boundary conditions $(J, c_-, c_+)$, with $c_-, c_+ \in A(pt)$, and only ask for gluing maps when the boundary conditions match up:
       
   141 \begin{equation*}
       
   142 \gl : A(J, c_-, c_0) \tensor A(J', c_0, c_+) \to A(J \cup J', c_-, c_+).
       
   143 \end{equation*}
       
   144 The action of diffeomorphisms (and of $k$-parameter families of diffeomorphisms) ignores the boundary conditions.
       
   145 \todo{we presumably need to say something about $\id_c \in A(J, c, c)$.}
       
   146 
       
   147 At this point we can give two motivating examples. The first is `chains of maps to $M$' for some fixed target space $M$.
       
   148 \begin{defn}
       
   149 Define the topological $A_\infty$ category $C_*(\Maps(\bullet \to M))$ by
       
   150 \begin{enumerate}
       
   151 \item $A(J) = C_*(\Maps(J \to M))$, singular chains on the space of smooth maps from $J$ to $M$,
       
   152 \item $\ev_{J,J'} : \CD{J \to J'} \tensor A(J) \to A(J')$ is the composition
       
   153 \begin{align*}
       
   154 \CD{J \to J'} \tensor C_*(\Maps(J \to M)) & \to C_*(\Diff(J \to J') \times \Maps(J \to M)) \\ & \to C_*(\Maps(J' \to M)),
       
   155 \end{align*}
       
   156 where the first map is the product of singular chains, and the second is precomposition by the inverse of a diffeomorphism,
       
   157 \item $\gl_{J,J'} : A(J) \tensor A(J')$ takes the product of singular chains, then glues maps to $M$ together.
       
   158 \end{enumerate}
       
   159 The associativity conditions are trivially satisfied.
       
   160 \end{defn}
       
   161 
       
   162 The second example is simply the blob complex of $Y \times J$, for any $n-1$ manifold $Y$. We define $A(J) = \bc_*(Y \times J)$.
       
   163 Observe $\Diff(J \to J')$ embeds into $\Diff(Y \times J \to Y \times J')$. The evaluation and gluing maps then come directly from Properties
       
   164 \ref{property:evaluation} and \ref{property:gluing-map} respectively. We'll often write $bc_*(Y)$ for this algebra.
       
   165 
       
   166 The definition of a module follows closely the definition of an algebra or category.
       
   167 \begin{defn}
       
   168 \label{defn:topological-module}%
       
   169 A topological $A_\infty$-(left-)module $M$ over a topological $A_\infty$ category $A$
       
   170 consists of the following data.
       
   171 \begin{enumerate}
       
   172 \item A functor $K \mapsto M(K)$ from $1$-manifolds diffeomorphic to the standard interval, with the upper boundary point `marked', to complexes of vector spaces.
       
   173 \item For each pair of such marked intervals,
       
   174 an `evaluation' chain map $\ev_{K\to K'} : \CD{K \to K'} \tensor M(K) \to M(K')$.
       
   175 \item For each decomposition $K = J\cup K'$ of the marked interval
       
   176 $K$ into an unmarked interval $J$ and a marked interval $K'$, a gluing map
       
   177 $\gl_{J,K'} : A(J) \tensor M(K') \to M(K)$.
       
   178 \end{enumerate}
       
   179 The above data is required to satisfy
       
   180 conditions analogous to those in Definition \ref{defn:topological-algebra}.
       
   181 \end{defn}
       
   182 
       
   183 For any manifold $X$ with $\bdy X = Y$ (or indeed just with $Y$ a codimension $0$-submanifold of $\bdy X$) we can think of $\bc_*(X)$ as
       
   184 a topological $A_\infty$ module over $\bc_*(Y)$, the topological $A_\infty$ category described above.
       
   185 For each interval $K$, we have $M(K) = \bc_*((Y \times K) \cup_Y X)$.
       
   186 (Here we glue $Y \times pt$ to $Y \subset \bdy X$, where $pt$ is the marked point of $K$.) Again, the evaluation and gluing maps come directly from Properties
       
   187 \ref{property:evaluation} and \ref{property:gluing-map} respectively.
       
   188 
       
   189 The definition of a bimodule is like the definition of a module,
       
   190 except that we have two disjoint marked intervals $K$ and $L$, one with a marked point
       
   191 on the upper boundary and the other with a marked point on the lower boundary.
       
   192 There are evaluation maps corresponding to gluing unmarked intervals
       
   193 to the unmarked ends of $K$ and $L$.
       
   194 
       
   195 Let $X$ be an $n$-manifold with a copy of $Y \du -Y$ embedded as a
       
   196 codimension-0 submanifold of $\bdy X$.
       
   197 Then the the assignment $K,L \mapsto \bc_*(X \cup_Y (Y\times K) \cup_{-Y} (-Y\times L))$ has the
       
   198 structure of a topological $A_\infty$ bimodule over $\bc_*(Y)$.
       
   199 
       
   200 Next we define the coend
       
   201 (or gluing or tensor product or self tensor product, depending on the context)
       
   202 $\gl(M)$ of a topological $A_\infty$ bimodule $M$. This will be an `initial' or `universal' object satisfying various properties.
       
   203 \begin{defn}
       
   204 We define a category $\cG(M)$. Objects consist of the following data.
       
   205 \begin{itemize}
       
   206 \item For each interval $N$ with both endpoints marked, a complex of vector spaces C(N).
       
   207 \item For each pair of intervals $N,N'$ an evaluation chain map
       
   208 $\ev_{N \to N'} : \CD{N \to N'} \tensor C(N) \to C(N')$.
       
   209 \item For each decomposition of intervals $N = K\cup L$,
       
   210 a gluing map $\gl_{K,L} : M(K,L) \to C(N)$.
       
   211 \end{itemize}
       
   212 This data must satisfy the following conditions.
       
   213 \begin{itemize}
       
   214 \item The evaluation maps are associative.
       
   215 \nn{up to homotopy?}
       
   216 \item Gluing is strictly associative.
       
   217 That is, given a decomposition $N = K\cup J\cup L$, the chain maps associated to
       
   218 $K\du J\du L \to (K\cup J)\du L \to N$ and $K\du J\du L \to K\du (J\cup L) \to N$
       
   219 agree.
       
   220 \item the gluing and evaluation maps are compatible.
       
   221 \end{itemize}
       
   222 
       
   223 A morphism $f$ between such objects $C$ and $C'$ is a chain map $f_N : C(N) \to C'(N)$ for each interval $N$ with both endpoints marked,
       
   224 satisfying the following conditions.
       
   225 \begin{itemize}
       
   226 \item For each pair of intervals $N,N'$, the diagram
       
   227 \begin{equation*}
       
   228 \xymatrix{
       
   229 \CD{N \to N'} \tensor C(N) \ar[d]_{\ev} \ar[r]^{\id \tensor f_N} & \CD{N \to N'} \tensor C'(N) \ar[d]^{\ev} \\
       
   230 C(N) \ar[r]_{f_N} & C'(N)
       
   231 }
       
   232 \end{equation*}
       
   233 commutes.
       
   234 \item For each decomposition of intervals $N = K \cup L$, the gluing map for $C'$, $\gl'_{K,L} : M(K,L) \to C'(N)$ is the composition
       
   235 $$M(K,L) \xto{\gl_{K,L}} C(N) \xto{f_N} C'(N).$$
       
   236 \end{itemize}
       
   237 \end{defn}
       
   238 
       
   239 We now define $\gl(M)$ to be an initial object in the category $\cG{M}$. This just says that for any other object $C'$ in $\cG{M}$,
       
   240 there are chain maps $f_N: \gl(M)(N) \to C'(N)$, compatible with the action of families of diffeomorphisms, so that the gluing maps $M(K,L) \to C'(N)$
       
   241 factor through the gluing maps for $\gl(M)$.
       
   242 
       
   243 We return to our two favourite examples. First, the coend of the topological $A_\infty$ category $C_*(\Maps(\bullet \to M))$ as a bimodule over itself
       
   244 is essentially $C_*(\Maps(S^1 \to M))$. \todo{}
       
   245 
       
   246 For the second example, given $X$ and $Y\du -Y \sub \bdy X$, the assignment
       
   247 $$N \mapsto \bc_*(X \cup_{Y\du -Y} (N\times Y))$$ clearly gives an object in $\cG{M}$.
       
   248 Showing that it is an initial object is the content of the gluing theorem proved below.
       
   249 
       
   250 
       
   251 \nn{Need to let the input $n$-category $C$ be a graded thing (e.g. DG
       
   252 $n$-category or $A_\infty$ $n$-category). DG $n$-category case is pretty
       
   253 easy, I think, so maybe it should be done earlier??}
       
   254 
       
   255 \bigskip
       
   256 
       
   257 Outline:
       
   258 \begin{itemize}
       
   259 \item recall defs of $A_\infty$ category (1-category only), modules, (self-) tensor product.
       
   260 use graphical/tree point of view, rather than following Keller exactly
       
   261 \item define blob complex in $A_\infty$ case; fat mapping cones?  tree decoration?
       
   262 \item topological $A_\infty$ cat def (maybe this should go first); also modules gluing
       
   263 \item motivating example: $C_*(\Maps(X, M))$
       
   264 \item maybe incorporate dual point of view (for $n=1$), where points get
       
   265 object labels and intervals get 1-morphism labels
       
   266 \end{itemize}
       
   267 
       
   268 
       
   269 \subsection{$A_\infty$ action on the boundary}
       
   270 \label{sec:boundary-action}%
       
   271 Let $Y$ be an $n{-}1$-manifold.
       
   272 The collection of complexes $\{\bc_*(Y\times I; a, b)\}$, where $a, b \in \cC(Y)$ are boundary
       
   273 conditions on $\bd(Y\times I) = Y\times \{0\} \cup Y\times\{1\}$, has the structure
       
   274 of an $A_\infty$ category.
       
   275 
       
   276 Composition of morphisms (multiplication) depends of a choice of homeomorphism
       
   277 $I\cup I \cong I$.  Given this choice, gluing gives a map
       
   278 \eq{
       
   279     \bc_*(Y\times I; a, b) \otimes \bc_*(Y\times I; b, c) \to \bc_*(Y\times (I\cup I); a, c)
       
   280             \cong \bc_*(Y\times I; a, c)
       
   281 }
       
   282 Using (\ref{CDprop}) and the inclusion $\Diff(I) \sub \Diff(Y\times I)$ gives the various
       
   283 higher associators of the $A_\infty$ structure, more or less canonically.
       
   284 
       
   285 \nn{is this obvious?  does more need to be said?}
       
   286 
       
   287 Let $\cA(Y)$ denote the $A_\infty$ category $\bc_*(Y\times I; \cdot, \cdot)$.
       
   288 
       
   289 Similarly, if $Y \sub \bd X$, a choice of collaring homeomorphism
       
   290 $(Y\times I) \cup_Y X \cong X$ gives the collection of complexes $\bc_*(X; r, a)$
       
   291 (variable $a \in \cC(Y)$; fixed $r \in \cC(\bd X \setmin Y)$) the structure of a representation of the
       
   292 $A_\infty$ category $\{\bc_*(Y\times I; \cdot, \cdot)\}$.
       
   293 Again the higher associators come from the action of $\Diff(I)$ on a collar neighborhood
       
   294 of $Y$ in $X$.
       
   295 
       
   296 In the next section we use the above $A_\infty$ actions to state and prove
       
   297 a gluing theorem for the blob complexes of $n$-manifolds.
       
   298 
       
   299 
       
   300 \subsection{The gluing formula}
       
   301 \label{sec:gluing-formula}%
       
   302 Let $Y$ be an $n{-}1$-manifold and let $X$ be an $n$-manifold with a copy
       
   303 of $Y \du -Y$ contained in its boundary.
       
   304 Gluing the two copies of $Y$ together we obtain a new $n$-manifold $X\sgl$.
       
   305 We wish to describe the blob complex of $X\sgl$ in terms of the blob complex
       
   306 of $X$.
       
   307 More precisely, we want to describe $\bc_*(X\sgl; c\sgl)$,
       
   308 where $c\sgl \in \cC(\bd X\sgl)$,
       
   309 in terms of the collection $\{\bc_*(X; c, \cdot, \cdot)\}$, thought of as a representation
       
   310 of the $A_\infty$ category $\cA(Y\du-Y) \cong \cA(Y)\times \cA(Y)\op$.
       
   311 
       
   312 \begin{thm}
       
   313 $\bc_*(X\sgl; c\sgl)$ is quasi-isomorphic to the the self tensor product
       
   314 of $\{\bc_*(X; c, \cdot, \cdot)\}$ over $\cA(Y)$.
       
   315 \end{thm}
       
   316 
       
   317 The proof will occupy the remainder of this section.
       
   318 
       
   319 \nn{...}
       
   320 
       
   321 \bigskip
       
   322 
       
   323 \nn{need to define/recall def of (self) tensor product over an $A_\infty$ category}
       
   324