text/appendixes/smallblobs.tex
changeset 452 43fa3a30d89c
parent 451 bb7e388b9704
equal deleted inserted replaced
451:bb7e388b9704 452:43fa3a30d89c
    14 \begin{rem}
    14 \begin{rem}
    15 We can't quite do the same with all $\cV_k$ just equal to $\cU$, but we can get by if we give ourselves arbitrarily little room to maneuver, by making the blobs we act on slightly smaller.
    15 We can't quite do the same with all $\cV_k$ just equal to $\cU$, but we can get by if we give ourselves arbitrarily little room to maneuver, by making the blobs we act on slightly smaller.
    16 \end{rem}
    16 \end{rem}
    17 \begin{proof}
    17 \begin{proof}
    18 This follows from Remark \ref{rem:for-small-blobs} following the proof of 
    18 This follows from Remark \ref{rem:for-small-blobs} following the proof of 
    19 Proposition \ref{CHprop}.
    19 Theorem \ref{thm:CH}.
    20 \end{proof}
    20 \end{proof}
    21 
    21 
    22 \begin{proof}[Proof of Theorem \ref{thm:small-blobs}]
    22 \begin{proof}[Proof of Theorem \ref{thm:small-blobs}]
    23 We begin by describing the homotopy inverse in small degrees, to illustrate the general technique.
    23 We begin by describing the homotopy inverse in small degrees, to illustrate the general technique.
    24 We will construct a chain map $s:  \bc_*(M) \to \bc^{\cU}_*(M)$ and a homotopy $h:\bc_*(M) \to \bc_{*+1}(M)$ so that $\bdy h+h \bdy=i\circ s - \id$. The composition $s \circ i$ will just be the identity.
    24 We will construct a chain map $s:  \bc_*(M) \to \bc^{\cU}_*(M)$ and a homotopy $h:\bc_*(M) \to \bc_{*+1}(M)$ so that $\bdy h+h \bdy=i\circ s - \id$. The composition $s \circ i$ will just be the identity.
    25 
    25 
    26 On $0$-blobs, $s$ is just the identity; a blob diagram without any blobs is compatible with any open cover. 
    26 On $0$-blobs, $s$ is just the identity; a blob diagram without any blobs is compatible with any open cover. 
    27 \nn{KW: For some systems of fields this is not true.
    27 %\nn{KW: For some systems of fields this is not true.
    28 For example, consider a planar algebra with boxes of size greater than zero.
    28 %For example, consider a planar algebra with boxes of size greater than zero.
    29 So I think we should do the homotopy even in degree zero.
    29 %So I think we should do the homotopy even in degree zero.
    30 But as noted above, maybe it's best to ignore this.}
    30 %But as noted above, maybe it's best to ignore this.}
    31 Nevertheless, we'll begin introducing nomenclature at this point: for configuration $\beta$ of disjoint embedded balls in $M$ we'll associate a one parameter family of homeomorphisms $\phi_\beta : \Delta^1 \to \Homeo(M)$ (here $\Delta^m$ is the standard simplex $\setc{\mathbf{x} \in \Real^{m+1}}{\sum_{i=0}^m x_i = 1}$). For $0$-blobs, where $\beta = \eset$, all these homeomorphisms are just the identity.
    31 Nevertheless, we'll begin introducing nomenclature at this point: for configuration $\beta$ of disjoint embedded balls in $M$ we'll associate a one parameter family of homeomorphisms $\phi_\beta : \Delta^1 \to \Homeo(M)$ (here $\Delta^m$ is the standard simplex $\setc{\mathbf{x} \in \Real^{m+1}}{\sum_{i=0}^m x_i = 1}$). For $0$-blobs, where $\beta = \eset$, all these homeomorphisms are just the identity.
    32 
    32 
    33 When $\beta$ is a collection of disjoint embedded balls in $M$, we say that a homeomorphism of $M$ ``makes $\beta$ small" if the image of each ball in $\beta$ under the homeomorphism is contained in some open set of $\cU$. Further, we'll say a homeomorphism ``makes $\beta$ $\epsilon$-small" if the image of each ball is contained in some open ball of radius $\epsilon$.
    33 When $\beta$ is a collection of disjoint embedded balls in $M$, we say that a homeomorphism of $M$ ``makes $\beta$ small" if the image of each ball in $\beta$ under the homeomorphism is contained in some open set of $\cU$. Further, we'll say a homeomorphism ``makes $\beta$ $\epsilon$-small" if the image of each ball is contained in some open ball of radius $\epsilon$.
    34 
    34 
    35 On a $1$-blob $b$, with ball $\beta$, $s$ is defined as the sum of two terms. Essentially, the first term ``makes $\beta$ small", while the other term ``gets the boundary right". First, pick a one-parameter family $\phi_\beta : \Delta^1 \to \Homeo(M)$ of homeomorphisms, so $\phi_\beta(1,0)$ is the identity and $\phi_\beta(0,1)$ makes the ball $\beta$ small --- in fact, not just small with respect to $\cU$, but $\epsilon/2$-small, where $\epsilon > 0$ is such that every $\epsilon$-ball is contained in some open set of $\cU$. Next, pick a two-parameter family $\phi_{\eset \prec \beta} : \Delta^2 \to \Homeo(M)$ so that $\phi_{\eset \prec \beta}(0,x_1,x_2)$ makes the ball $\beta$ $\frac{3\epsilon}{4}$-small for all $x_1+x_2=1$, while $\phi_{\eset \prec \beta}(x_0,0,x_2) = \phi_\beta(x_0,x_2)$ and $\phi_{\eset \prec \beta}(x_0,x_1,0) = \phi_\eset(x_0,x_1)$. (It's perhaps not obvious that this is even possible --- see Lemma \ref{lem:extend-small-homeomorphisms} below.) We now define $s$ by
    35 On a $1$-blob $b$, with ball $\beta$, $s$ is defined as the sum of two terms. Essentially, the first term ``makes $\beta$ small", while the other term ``gets the boundary right". First, pick a one-parameter family $\phi_\beta : \Delta^1 \to \Homeo(M)$ of homeomorphisms, so $\phi_\beta(1,0)$ is the identity and $\phi_\beta(0,1)$ makes the ball $\beta$ small --- in fact, not just small with respect to $\cU$, but $\epsilon/2$-small, where $\epsilon > 0$ is such that every $\epsilon$-ball is contained in some open set of $\cU$. Next, pick a two-parameter family $\phi_{\eset \prec \beta} : \Delta^2 \to \Homeo(M)$ so that $\phi_{\eset \prec \beta}(0,x_1,x_2)$ makes the ball $\beta$ $\frac{3\epsilon}{4}$-small for all $x_1+x_2=1$, while $\phi_{\eset \prec \beta}(x_0,0,x_2) = \phi_\beta(x_0,x_2)$ and $\phi_{\eset \prec \beta}(x_0,x_1,0) = \phi_\eset(x_0,x_1)$. (It's perhaps not obvious that this is even possible --- see Lemma \ref{lem:extend-small-homeomorphisms} below.) We now define $s$ by
   117 As in the $k=1$ case, the first term, corresponding to $i(b) = \eset$, makes the all balls in $\beta$ $\cV_1$-small. However, if this were the only term $s$ would not be a chain map, because we have no control over $\restrict{\phi_{\beta}}{x_0 = 0}(\bdy b)$. This necessitates the other terms, which fix the boundary at successively higher codimensions.
   117 As in the $k=1$ case, the first term, corresponding to $i(b) = \eset$, makes the all balls in $\beta$ $\cV_1$-small. However, if this were the only term $s$ would not be a chain map, because we have no control over $\restrict{\phi_{\beta}}{x_0 = 0}(\bdy b)$. This necessitates the other terms, which fix the boundary at successively higher codimensions.
   118 
   118 
   119 It may be useful to look at Figure \ref{fig:erectly-a-tent-badly} to help understand the arrangement. The red, blue and orange $2$-cells there correspond to the $m=0$, $m=1$ and $m=2$ terms respectively, while the $3$-cells (only one of each type is shown) correspond to the terms in the homotopy $h$.
   119 It may be useful to look at Figure \ref{fig:erectly-a-tent-badly} to help understand the arrangement. The red, blue and orange $2$-cells there correspond to the $m=0$, $m=1$ and $m=2$ terms respectively, while the $3$-cells (only one of each type is shown) correspond to the terms in the homotopy $h$.
   120 \begin{figure}[!ht]
   120 \begin{figure}[!ht]
   121 $$\mathfig{0.5}{smallblobs/tent}$$
   121 $$\mathfig{0.5}{smallblobs/tent}$$
   122 \caption{``Erecting a tent badly.'' We know where we want to send a simplex, and each of the iterated boundary components. However, these do not agree, and we need to stitch the pieces together. Note that these diagrams don't exactly match the situation in the text: a $k$-simplex has $k+1$ boundary components, while a $k$-blob has $k$ boundary terms. \nn{turn upside?}}
   122 \caption{``Erecting a tent badly.'' We know where we want to send a simplex, and each of the iterated boundary components. However, these do not agree, and we need to stitch the pieces together. Note that these diagrams don't exactly match the situation in the text: a $k$-simplex has $k+1$ boundary components, while a $k$-blob has $k$ boundary terms.}
   123 \label{fig:erectly-a-tent-badly}
   123 \label{fig:erectly-a-tent-badly}
   124 \end{figure}
   124 \end{figure}
   125 
   125 
   126 Now
   126 Now
   127 \begin{align*}
   127 \begin{align*}