blob1.tex
changeset 25 48919b6f51b8
parent 24 b3e7c532e98e
child 26 88ec5e070f25
equal deleted inserted replaced
24:b3e7c532e98e 25:48919b6f51b8
    52 \def\calc#1{\expandafter\def\csname c#1\endcsname{{\mathcal #1}}}
    52 \def\calc#1{\expandafter\def\csname c#1\endcsname{{\mathcal #1}}}
    53 \applytolist{calc}QWERTYUIOPLKJHGFDSAZXCVBNM;
    53 \applytolist{calc}QWERTYUIOPLKJHGFDSAZXCVBNM;
    54 
    54 
    55 % \DeclareMathOperator{\pr}{pr} etc.
    55 % \DeclareMathOperator{\pr}{pr} etc.
    56 \def\declaremathop#1{\expandafter\DeclareMathOperator\csname #1\endcsname{#1}}
    56 \def\declaremathop#1{\expandafter\DeclareMathOperator\csname #1\endcsname{#1}}
    57 \applytolist{declaremathop}{pr}{im}{id}{gl}{ev}{tr}{rot}{Eq}{obj}{mor}{ob}{Rep}{Tet}{cat}{Diff}{sign}{supp}{maps};
    57 \applytolist{declaremathop}{pr}{im}{id}{gl}{ev}{tr}{rot}{Eq}{obj}{mor}{ob}{Rep}{Tet}{cat}{Maps}{Diff}{sign}{supp}{maps};
    58 
    58 
    59 
    59 
    60 
    60 
    61 %%%%%% end excerpt
    61 %%%%%% end excerpt
    62 
    62 
   935 \begin{defn}
   935 \begin{defn}
   936 \label{defn:topological-algebra}%
   936 \label{defn:topological-algebra}%
   937 A ``topological $A_\infty$-algebra'' $A$ consists of the data
   937 A ``topological $A_\infty$-algebra'' $A$ consists of the data
   938 \begin{enumerate}
   938 \begin{enumerate}
   939 \item for each $1$-manifold $J$ diffeomorphic to the standard interval $I=\left[0,1\right]$, a complex of vector spaces $A(J)$,
   939 \item for each $1$-manifold $J$ diffeomorphic to the standard interval $I=\left[0,1\right]$, a complex of vector spaces $A(J)$,
   940 \item along with an `evaluation' chain map $\ev_J : \CD{J} \tensor A(J) \to A(J)$,
   940 % either roll functoriality into the evaluation map
   941 \item for each diffeomorphism $\phi : J \to J'$, an isomorphism $A(\phi) : A(J) \isoto A(J')$,
   941 \item and for each pair of intervals $J,J'$ an `evaluation' chain map $\ev_{J \to J'} : \CD{J \to J'} \tensor A(J) \to A(J')$,
   942 \item and whenever $\bdy J \cap \bdy J'$ is a single point, a gluing map $\gl_{J,J'} : A(J) \tensor A(J') \to A(J \cup J')$,
   942 \item and a gluing map $\gl_{J,J'} : A(J) \tensor A(J') \to A(J \cup J')$,
       
   943 % or do it as two separate pieces of data
       
   944 %\item along with an `evaluation' chain map $\ev_J : \CD{J} \tensor A(J) \to A(J)$,
       
   945 %\item for each diffeomorphism $\phi : J \to J'$, an isomorphism $A(\phi) : A(J) \isoto A(J')$,
       
   946 %\item and for each pair of intervals $J,J'$ a gluing map $\gl_{J,J'} : A(J) \tensor A(J') \to A(J \cup J')$,
   943 \end{enumerate}
   947 \end{enumerate}
   944 satisfying the following conditions.
   948 satisfying the following conditions.
   945 \begin{itemize}
   949 \begin{itemize}
   946 \item If $\phi$ is a diffeomorphism from $J$ to itself, the maps $\ev_J(\phi, -)$ and $A(\phi)$ are the same.
       
   947 \item The evaluation chain map is associative, in that the diagram
   950 \item The evaluation chain map is associative, in that the diagram
   948 \begin{equation*}
   951 \begin{equation*}
   949 \xymatrix{
   952 \xymatrix{
   950 \CD{J} \tensor \CD{J} \tensor A(J) \ar[r]^{\Id \tensor \ev_J} \ar[d]_{\compose \tensor \Id} &
   953 \CD{J' \to J''} \tensor \CD{J \to J'} \tensor A(J) \ar[r]^{\Id \tensor \ev_{J \to J'}} \ar[d]_{\compose \tensor \Id} &
   951 \CD{J} \tensor A(J) \ar[d]^{\ev_J} \\
   954 \CD{J' \to J''} \tensor A(J') \ar[d]^{\ev_{J' \to J''}} \\
   952 \CD{J} \tensor A(J) \ar[r]_{\ev_J} &
   955 \CD{J \to J''} \tensor A(J) \ar[r]_{\ev_{J \to J''}} &
   953 A(J)
   956 A(J'')
   954 }
   957 }
   955 \end{equation*}
   958 \end{equation*}
   956 commutes. (Here the map $\compose : \CD{J} \tensor \CD{J} \to \CD{J}$ is a composition: take products of singular chains first, then use the group multiplication in $\Diff(J)$.)
   959 commutes. (Here the map $\compose : \CD{J' \to J''} \tensor \CD{J \to J'} \to \CD{J \to J''}$ is a composition: take products of singular chains first, then compose diffeomorphisms.)
       
   960 %% or the version for separate pieces of data:
       
   961 %\item If $\phi$ is a diffeomorphism from $J$ to itself, the maps $\ev_J(\phi, -)$ and $A(\phi)$ are the same.
       
   962 %\item The evaluation chain map is associative, in that the diagram
       
   963 %\begin{equation*}
       
   964 %\xymatrix{
       
   965 %\CD{J} \tensor \CD{J} \tensor A(J) \ar[r]^{\Id \tensor \ev_J} \ar[d]_{\compose \tensor \Id} &
       
   966 %\CD{J} \tensor A(J) \ar[d]^{\ev_J} \\
       
   967 %\CD{J} \tensor A(J) \ar[r]_{\ev_J} &
       
   968 %A(J)
       
   969 %}
       
   970 %\end{equation*}
       
   971 %commutes. (Here the map $\compose : \CD{J} \tensor \CD{J} \to \CD{J}$ is a composition: take products of singular chains first, then use the group multiplication in $\Diff(J)$.)
   957 \item The gluing maps are \emph{strictly} associative. That is, given $J$, $J'$ and $J''$, the diagram
   972 \item The gluing maps are \emph{strictly} associative. That is, given $J$, $J'$ and $J''$, the diagram
   958 \begin{equation*}
   973 \begin{equation*}
   959 \xymatrix{
   974 \xymatrix{
   960 A(J) \tensor A(J') \tensor A(J'') \ar[rr]^{\gl_{J,J'} \tensor \Id} \ar[d]_{\Id \tensor \gl_{J',J''}} &&
   975 A(J) \tensor A(J') \tensor A(J'') \ar[rr]^{\gl_{J,J'} \tensor \Id} \ar[d]_{\Id \tensor \gl_{J',J''}} &&
   961 A(J \cup J') \tensor A(J'') \ar[d]^{\gl_{J \cup J', J''}} \\
   976 A(J \cup J') \tensor A(J'') \ar[d]^{\gl_{J \cup J', J''}} \\
   966 commutes.
   981 commutes.
   967 \end{itemize}
   982 \end{itemize}
   968 \end{defn}
   983 \end{defn}
   969 
   984 
   970 \begin{rem}
   985 \begin{rem}
   971 Of course, the first and third pieces of data (the complexes, and the isomorphisms) together just constitute a functor from the category of
   986 We can restrict the evaluation map to $0$-chains, and see that $J \mapsto A(J)$ and $(\phi:J \to J') \mapsto \ev_{J \to J'}(\phi, -)$ together
   972 intervals and diffeomorphisms between them to the category of complexes of vector spaces.
   987 constitute a functor from the category of intervals and diffeomorphisms between them to the category of complexes of vector spaces.
   973 Further, one can combine the second and third pieces of data, asking instead for a map
   988 Further, once this functor has been specified, we only need to know how the evaluation map acts when $J = J'$.
   974 \begin{equation*}
       
   975 \ev_{J,J'} : \CD{J \to J'} \tensor A(J) \to A(J').
       
   976 \end{equation*}
       
   977 (Any $k$-parameter family of diffeomorphisms in $C_k(\Diff(J \to J'))$ factors into a single diffeomorphism $J \to J'$ and a $k$-parameter family of
       
   978 diffeomorphisms in $\CD{J'}$.)
       
   979 \end{rem}
   989 \end{rem}
       
   990 
       
   991 %% if we do things separately, we should say this:
       
   992 %\begin{rem}
       
   993 %Of course, the first and third pieces of data (the complexes, and the isomorphisms) together just constitute a functor from the category of
       
   994 %intervals and diffeomorphisms between them to the category of complexes of vector spaces.
       
   995 %Further, one can combine the second and third pieces of data, asking instead for a map
       
   996 %\begin{equation*}
       
   997 %\ev_{J,J'} : \CD{J \to J'} \tensor A(J) \to A(J').
       
   998 %\end{equation*}
       
   999 %(Any $k$-parameter family of diffeomorphisms in $C_k(\Diff(J \to J'))$ factors into a single diffeomorphism $J \to J'$ and a $k$-parameter family of
       
  1000 %diffeomorphisms in $\CD{J'}$.)
       
  1001 %\end{rem}
   980 
  1002 
   981 To generalise the definition to that of a category, we simply introduce a set of objects which we call $A(pt)$. Now we associate complexes to each
  1003 To generalise the definition to that of a category, we simply introduce a set of objects which we call $A(pt)$. Now we associate complexes to each
   982 interval with boundary conditions $(J, c_-, c_+)$, with $c_-, c_+ \in A(pt)$, and only ask for gluing maps when the boundary conditions match up:
  1004 interval with boundary conditions $(J, c_-, c_+)$, with $c_-, c_+ \in A(pt)$, and only ask for gluing maps when the boundary conditions match up:
   983 \begin{equation*}
  1005 \begin{equation*}
   984 \gl : A(J, c_-, c_0) \tensor A(J', c_0, c_+) \to A(J \cup J', c_-, c_+).
  1006 \gl : A(J, c_-, c_0) \tensor A(J', c_0, c_+) \to A(J \cup J', c_-, c_+).
   985 \end{equation*}
  1007 \end{equation*}
   986 The action of diffeomorphisms, and $k$-parameter families of diffeomorphisms, ignore the boundary conditions.
  1008 The action of diffeomorphisms (and of $k$-parameter families of diffeomorphisms) ignores the boundary conditions.
   987 \todo{we presumably need to say something about $\Id_c \in A(J, c, c)$.}
  1009 \todo{we presumably need to say something about $\Id_c \in A(J, c, c)$.}
       
  1010 
       
  1011 At this point we can give two motivating examples. The first is `chains of maps to $M$' for some fixed target space $M$.
       
  1012 \begin{defn}
       
  1013 Define the topological $A_\infty$ category $C_*(\Maps(- \to M))$ by
       
  1014 \begin{enumerate}
       
  1015 \item $A(J) = C_*(\Maps(J \to M))$, singular chains on the space of smooth maps from $J$ to $M$,
       
  1016 \item $\ev_{J,J'} : \CD{J \to J'} \tensor A(J) \to A(J')$ is the composition $\CD{J \to J'} \tensor C_*(\Maps(J \to M)) \to C_*(\Diff(J \to J') \times \Maps(J \to M)) \to C_*(\Maps(J' \to M))$, where the first map is the product of singular chains, and the second is precomposition by the inverse of a diffeomorphism\todo{inverse, really?!},
       
  1017 \item $\gl_{J,J'} : A(J) \tensor A(J')$ takes the product of singular chains, then glues maps to $M$ together.
       
  1018 \end{enumerate}
       
  1019 The associativity conditions are trivially satisfied.
       
  1020 \end{defn}
       
  1021 
       
  1022 The second example is simply the blob complex of $Y \times J$, for any $n-1$ manifold $Y$. We define $A(J) = \bc_*(Y \times J)$.
       
  1023 Observe $\Diff(J \to J')$ embeds into $\Diff(Y \times J \to Y \times J')$. The evaluation and gluing maps then come directly from Properties
       
  1024 \ref{property:evaluation} and \ref{property:gluing-map} respectively.
   988 
  1025 
   989 The definition of a module follows closely the definition of an algebra or category.
  1026 The definition of a module follows closely the definition of an algebra or category.
   990 \begin{defn}
  1027 \begin{defn}
   991 \label{defn:topological-module}%
  1028 \label{defn:topological-module}%
   992 A topological $A_\infty$-(left-)module $M$ over a topological $A_\infty$ category $A$ consists of the data
  1029 A topological $A_\infty$-(left-)module $M$ over a topological $A_\infty$ category $A$ consists of the data
   993 \begin{enumerate}
  1030 \begin{enumerate}
   994 \item a functor $K \mapsto M(K)$ from $1$-manifolds diffeomorphic to the standard interval, with a marked point on a boundary, to complexes of vector spaces,
  1031 \item a functor $K \mapsto M(K)$ from $1$-manifolds diffeomorphic to the standard interval, with a marked point on a boundary, to complexes of vector spaces,
   995 \item along with an `evaluation' map $\ev_K : \CD{K} \tensor M(K) \to M(K)$
  1032 \item along with an `evaluation' map $\ev_K : \CD{K} \tensor M(K) \to M(K)$
   996 \item whenever $\bdy J \cap K$ is a single point, and isn't the marked point of $K$ \todo{ugh, that's so gross}, a gluing map
  1033 \item and for each interval $J$ and interval $K$ a marked point on the right boundary, a gluing map
   997 $\gl_{J,K} : A(J) \tensor M(K) \to M(J \cup K)$
  1034 $\gl_{J,K} : A(J) \tensor M(K) \to M(J \cup K)$
   998 \end{enumerate}
  1035 \end{enumerate}
   999 satisfying the obvious analogous conditions as in Definition \ref{defn:topological-algebra}.
  1036 satisfying the obvious conditions analogous to those in Definition \ref{defn:topological-algebra}.
  1000 \end{defn}
  1037 \end{defn}
  1001 
  1038 
  1002 \todo{Bimodules, and gluing}
  1039 \todo{Bimodules, and gluing}
  1003 
  1040 
  1004 \todo{the motivating example $C_*(\maps(X, M))$}
  1041 \todo{the motivating example $C_*(\maps(X, M))$}