text/ncat.tex
changeset 144 48b246f6a7ad
parent 143 c46b2a01e789
child 145 b5c1a6aec50d
equal deleted inserted replaced
143:c46b2a01e789 144:48b246f6a7ad
   882 $\cC(D\times W, \cN)$, where in this case $\cN_i$ labels the submanifold 
   882 $\cC(D\times W, \cN)$, where in this case $\cN_i$ labels the submanifold 
   883 $D\times Y_i \sub \bd(D\times W)$.
   883 $D\times Y_i \sub \bd(D\times W)$.
   884 
   884 
   885 It is not hard to see that the assignment $D \mapsto \cT(W, \cN)(D) \deq \cC(D\times W, \cN)$
   885 It is not hard to see that the assignment $D \mapsto \cT(W, \cN)(D) \deq \cC(D\times W, \cN)$
   886 has the structure of an $n{-}k$-category.
   886 has the structure of an $n{-}k$-category.
   887 We will use a simple special case of this construction in the next subsection to define tensor products 
   887 
       
   888 \medskip
       
   889 
       
   890 
       
   891 %\subsection{Tensor products}
       
   892 
       
   893 We will use a simple special case of the above 
       
   894 construction to define tensor products 
   888 of modules.
   895 of modules.
   889 
   896 Let $\cM_1$ and $\cM_2$ be modules for an $n$-category $\cC$.
   890 \subsection{Tensor products}
       
   891 
       
   892 Next we consider tensor products.
       
   893 
       
   894 \nn{what about self tensor products /coends ?}
       
   895 
       
   896 \nn{maybe ``tensor product" is not the best name?}
       
   897 
       
   898 \nn{start with (less general) tensor products; maybe change this later}
       
   899 
       
   900 
       
   901 Let $\cM$ and $\cM'$ be modules for an $n$-category $\cC$.
       
   902 (If $k=1$ and manifolds are oriented, then one should be 
   897 (If $k=1$ and manifolds are oriented, then one should be 
   903 a left module and the other a right module.)
   898 a left module and the other a right module.)
   904 We will define an $n{-}1$-category $\cM\ot_\cC\cM'$, which depends (functorially)
   899 Choose a 1-ball $J$, and label the two boundary points of $J$ by $\cM_1$ and $\cM_2$.
   905 on a choice of 1-ball (interval) $J$.
   900 Define the tensor product of $\cM_1$ and $\cM_2$ to be the 
   906 
   901 $n{-}1$-category $\cT(J, \cM_1, \cM_2)$,
   907 Let $p$ and $p'$ be the boundary points of $J$.
   902 \[
   908 Given a $k$-ball $X$, let $(X\times J, \cM, \cM')$ denote $X\times J$ with
   903 	\cM_1\otimes \cM_2 \deq \cT(J, \cM_1, \cM_2) .
   909 $X\times\{p\}$ labeled by $\cM$ and $X\times\{p'\}$ labeled by $\cM'$, as in Subsection \ref{moddecss}.
   904 \]
   910 Let
   905 This of course depends (functorially)
   911 \[
   906 on the choice of 1-ball $J$.
   912 	\cT(X) \deq \cC(X\times J, \cM, \cM') ,
   907 
   913 \]
   908 We will define a more general self tensor product (categorified coend) below.
   914 where the right hand side is the colimit construction defined in Subsection \ref{moddecss}.
   909 
   915 It is not hard to see that $\cT$ becomes an $n{-}1$-category.
   910 
   916 \nn{maybe follows from stuff (not yet written) in previous subsection?}
   911 
       
   912 
       
   913 %\nn{what about self tensor products /coends ?}
       
   914 
       
   915 \nn{maybe ``tensor product" is not the best name?}
       
   916 
       
   917 %\nn{start with (less general) tensor products; maybe change this later}
   917 
   918 
   918 
   919 
   919 
   920 
   920 \subsection{The $n{+}1$-category of sphere modules}
   921 \subsection{The $n{+}1$-category of sphere modules}
       
   922 
       
   923 
   921 
   924 
   922 Outline:
   925 Outline:
   923 \begin{itemize}
   926 \begin{itemize}
   924 \item 
   927 \item 
   925 \end{itemize}
   928 \end{itemize}
   926 
   929 
   927 
   930 
       
   931 \nn{need to assume a little extra structure to define the top ($n+1$) part (?)}
   928 
   932 
   929 \medskip
   933 \medskip
   930 \hrule
   934 \hrule
   931 \medskip
   935 \medskip
   932 
   936