text/ncat.tex
changeset 476 4d0ca2fc4f2b
parent 475 07c18e2abd8f
child 479 cfad13b6b1e5
equal deleted inserted replaced
475:07c18e2abd8f 476:4d0ca2fc4f2b
  1536 \end{eqnarray*}
  1536 \end{eqnarray*}
  1537 If $A$ and $Z_A$ are both the ground field $\k$, this simplifies to
  1537 If $A$ and $Z_A$ are both the ground field $\k$, this simplifies to
  1538 \[
  1538 \[
  1539 	(X_B\ot {_BY})^* \cong  \hom_B(X_B \to (_BY)^*) .
  1539 	(X_B\ot {_BY})^* \cong  \hom_B(X_B \to (_BY)^*) .
  1540 \]
  1540 \]
  1541 We will establish the analogous isomorphism for a topological $A_\infty$ 1-cat $\cC$
  1541 We would like to have the analogous isomorphism for a topological $A_\infty$ 1-cat $\cC$
  1542 and modules $\cM_\cC$ and $_\cC\cN$,
  1542 and modules $\cM_\cC$ and $_\cC\cN$,
  1543 \[
  1543 \[
  1544 	(\cM_\cC\ot {_\cC\cN})^* \cong  \hom_\cC(\cM_\cC \to (_\cC\cN)^*) .
  1544 	(\cM_\cC\ot {_\cC\cN})^* \cong  \hom_\cC(\cM_\cC \to (_\cC\cN)^*) .
  1545 \]
  1545 \]
  1546 
  1546 
  1547 In the next few paragraphs we define the objects appearing in the above equation:
  1547 In the next few paragraphs we define the objects appearing in the above equation:
  1548 $\cM_\cC\ot {_\cC\cN}$, $(\cM_\cC\ot {_\cC\cN})^*$, $(_\cC\cN)^*$ and finally
  1548 $\cM_\cC\ot {_\cC\cN}$, $(\cM_\cC\ot {_\cC\cN})^*$, $(_\cC\cN)^*$ and finally
  1549 $\hom_\cC$.
  1549 $\hom_\cC$.
  1550 
  1550 (Actually, we give only an incomplete definition of $(_\cC\cN)^*$, but since we are only trying to motivate the 
       
  1551 definition of $\hom_\cC$, this will suffice for our purposes.)
  1551 
  1552 
  1552 \def\olD{{\overline D}}
  1553 \def\olD{{\overline D}}
  1553 \def\cbar{{\bar c}}
  1554 \def\cbar{{\bar c}}
  1554 In the previous subsection we defined a tensor product of $A_\infty$ $n$-category modules
  1555 In the previous subsection we defined a tensor product of $A_\infty$ $n$-category modules
  1555 for general $n$.
  1556 for general $n$.
  1595 	 (-1)^{\deg f +1} (\bd f)(\olD\ot m\ot\cbar\ot n) & = f((\bd_0 \olD)\ot \rho(m\ot\cbar\ot n)) +  f((\bd_+ \olD)\ot m\ot\cbar\ot n) + \\
  1596 	 (-1)^{\deg f +1} (\bd f)(\olD\ot m\ot\cbar\ot n) & = f((\bd_0 \olD)\ot \rho(m\ot\cbar\ot n)) +  f((\bd_+ \olD)\ot m\ot\cbar\ot n) + \\
  1596 						     & \qquad + (-1)^{l} f(\olD\ot\bd m\ot\cbar \ot n)  + (-1)^{l + \deg m} f(\olD\ot m\ot\bd \cbar \ot n)  + \notag \\
  1597 						     & \qquad + (-1)^{l} f(\olD\ot\bd m\ot\cbar \ot n)  + (-1)^{l + \deg m} f(\olD\ot m\ot\bd \cbar \ot n)  + \notag \\
  1597 			& \qquad	 + (-1)^{l + \deg m + \deg \cbar} f(\olD\ot m\ot\cbar\ot \bd n). \notag
  1598 			& \qquad	 + (-1)^{l + \deg m + \deg \cbar} f(\olD\ot m\ot\cbar\ot \bd n). \notag
  1598 \end{align}
  1599 \end{align}
  1599 
  1600 
  1600 Next we define the dual module $(_\cC\cN)^*$.
  1601 Next we partially define the dual module $(_\cC\cN)^*$.
  1601 This will depend on a choice of interval $J$, just as the tensor product did.
  1602 This will depend on a choice of interval $J$, just as the tensor product did.
  1602 Recall that $_\cC\cN$ is, among other things, a functor from right-marked intervals
  1603 Recall that $_\cC\cN$ is, among other things, a functor from right-marked intervals
  1603 to chain complexes.
  1604 to chain complexes.
  1604 Given $J$, we define for each $K\sub J$ which contains the {\it left} endpoint of $J$
  1605 Given $J$, we define for each $K\sub J$ which contains the {\it left} endpoint of $J$
  1605 \[
  1606 \[
  1606 	(_\cC\cN)^*(K) \deq ({_\cC\cN}(J\setmin K))^* ,
  1607 	(_\cC\cN)^*(K) \deq ({_\cC\cN}(J\setmin K))^* ,
  1607 \]
  1608 \]
  1608 where $({_\cC\cN}(J\setmin K))^*$ denotes the (linear) dual of the chain complex associated
  1609 where $({_\cC\cN}(J\setmin K))^*$ denotes the (linear) dual of the chain complex associated
  1609 to the right-marked interval $J\setmin K$.
  1610 to the right-marked interval $J\setmin K$.
  1610 This extends to a functor from all left-marked intervals (not just those contained in $J$).
  1611 We define the action map
  1611 \nn{need to say more here; not obvious how homeomorphisms act}
  1612 \[
  1612 It's easy to verify the remaining module axioms.
  1613 	(_\cC\cN)^*(K) \ot \cC(I) \to (_\cC\cN)^*(K\cup I)
       
  1614 \]
       
  1615 to be the (partial) adjoint of the map
       
  1616 \[
       
  1617 	\cC(I)\ot {_\cC\cN}(J\setmin (K\cup I)) \to  {_\cC\cN}(J\setmin K) .
       
  1618 \]
       
  1619 This falls short of fully defining the module $(_\cC\cN)^*$ (in particular,
       
  1620 we have no action of homeomorphisms of left-marked intervals), but it will be enough to motivate
       
  1621 the definition of $\hom_\cC$ below.
  1613 
  1622 
  1614 Now we reinterpret $(\cM_\cC\ot {_\cC\cN})^*$
  1623 Now we reinterpret $(\cM_\cC\ot {_\cC\cN})^*$
  1615 as some sort of morphism $\cM_\cC \to (_\cC\cN)^*$.
  1624 as some sort of morphism $\cM_\cC \to (_\cC\cN)^*$.
  1616 Let $f\in (\cM_\cC\ot {_\cC\cN})^*$.
  1625 Let $f\in (\cM_\cC\ot {_\cC\cN})^*$.
  1617 Let $\olD = (D_0\cdots D_l)$ be a chain of subdivisions with $D_0 = [J = I_1\cup\cdots\cup I_m]$.
  1626 Let $\olD = (D_0\cdots D_l)$ be a chain of subdivisions with $D_0 = [J = I_1\cup\cdots\cup I_m]$.
  1770 
  1779 
  1771 
  1780 
  1772 \medskip
  1781 \medskip
  1773 
  1782 
  1774 
  1783 
  1775 \nn{should we define functors between $n$-cats in a similar way?  i.e.\ natural transformations
  1784 %\nn{should we define functors between $n$-cats in a similar way?  i.e.\ natural transformations
  1776 of the $\cC$ functors which commute with gluing only up to higher morphisms?
  1785 %of the $\cC$ functors which commute with gluing only up to higher morphisms?
  1777 perhaps worth having both definitions available.
  1786 %perhaps worth having both definitions available.
  1778 certainly the simple kind (strictly commute with gluing) arise in nature.}
  1787 %certainly the simple kind (strictly commute with gluing) arise in nature.}
  1779 
  1788 
  1780 
  1789 
  1781 
  1790 
  1782 
  1791 
  1783 \subsection{The $n{+}1$-category of sphere modules}
  1792 \subsection{The $n{+}1$-category of sphere modules}