text/smallblobs.tex
changeset 302 52309e058a95
parent 296 8158eef1c97e
child 305 54b226f7dea3
equal deleted inserted replaced
299:f582f921bd95 302:52309e058a95
    86 \nn{revision marker ...}
    86 \nn{revision marker ...}
    87 
    87 
    88 \newcommand{\length}[1]{\operatorname{length}(#1)}
    88 \newcommand{\length}[1]{\operatorname{length}(#1)}
    89 
    89 
    90 We've finally reached the point where we can define a map $s: \bc_*(M) \to \bc^{\cU}_*(M)$, and then a homotopy $h:\bc_*(M) \to \bc_{*+1}(M)$ so that $dh+hd=i\circ s$.  We have
    90 We've finally reached the point where we can define a map $s: \bc_*(M) \to \bc^{\cU}_*(M)$, and then a homotopy $h:\bc_*(M) \to \bc_{*+1}(M)$ so that $dh+hd=i\circ s$.  We have
    91 $$s(b) = \sum_{i} (-1)^{\sigma(i)} \ev(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor b_i)$$
    91 $$s(b) = \sum_{m=0}^{k} \sum_{i \in \{1, \ldots, k\}^{m} \setminus \Delta} (-1)^{\sigma(i)}  \ev(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor b_i),$$
    92 where the sum is over sequences $i=(i_1,\ldots,i_m)$ in $\{1,\ldots,k\}$, with $0\leq m \leq k$, $\sigma(i)$ is something to do with $i$, $i(b)$ denotes the increasing sequence of blob configurations
    92 where the sum is over sequences without repeats $i=(i_1,\ldots,i_m)$ in $\{1,\ldots,k\}$, with $0\leq m \leq k$ (we're using $\Delta$ here to indicate the generalized diagonal, where any two entries coincide), $\sigma(i)$ is something to do with $i$, $i(b)$ denotes the increasing sequence of blob configurations
    93 $$\beta_{(i_1,\ldots,i_m)} \prec \beta_{(i_2,\ldots,i_m)} \prec \cdots \prec \beta_{()},$$
    93 $$\beta_{(i_1,\ldots,i_m)} \prec \beta_{(i_2,\ldots,i_m)} \prec \cdots \prec \beta_{()},$$
    94 and, as usual, $b_i$ denotes $b$ with blobs $i_1, \ldots, i_m$ erased. We'll also write
    94 and, as usual, $b_i$ denotes $b$ with blobs $i_1, \ldots, i_m$ erased.
    95 $$s(b) = \sum_{m=0}^{k} \sum_{\length{i}=m} (-1)^{\sigma(i)}  \ev(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor b_i),$$
       
    96 where we arrange the sum according to the length of $i$.
       
    97 The homotopy $h:\bc_*(M) \to \bc_{*+1}(M)$ is similarly given by
    95 The homotopy $h:\bc_*(M) \to \bc_{*+1}(M)$ is similarly given by
    98 $$h(b) = \sum_{i} (-1)^{\sigma(i)} \ev(\phi_{i(b)}, b_i).$$
    96 $$h(b) = \sum_{m=0}^{k} \sum_{i} (-1)^{\sigma(i)} \ev(\phi_{i(b)}, b_i).$$
    99 
    97 
   100 Before completing the proof, we unpack this definition for $b \in \bc_2(M)$, a $2$-blob. We'll write $\beta$ for the underlying balls (either nested or disjoint).
    98 Before completing the proof, we unpack this definition for $b \in \bc_2(M)$, a $2$-blob. We'll write $\beta$ for the underlying balls (either nested or disjoint).
   101 Now $s$ is the sum of $5$ terms, split into three groups depending on with the length of the sequence $i$ is $0, 1$ or $2$. Thus
    99 Now $s$ is the sum of $5$ terms, split into three groups depending on with the length of the sequence $i$ is $0, 1$ or $2$. Thus
   102 \begin{align*}
   100 \begin{align*}
   103 s(b) & = (-1)^{\sigma()} \restrict{\phi_{\beta}}{x_0 = 0}(b) + \\
   101 s(b) & = (-1)^{\sigma()} \restrict{\phi_{\beta}}{x_0 = 0}(b) + \\
   123 	& \quad + (-1)^{\sigma(21)} \left( \restrict{\phi_{\beta_1 \prec \beta}}{x_0 = 0}(b_{12}) - \restrict{\phi_{\eset  \prec \beta}}{x_0 = 0}(b_{12}) + \restrict{\phi_{\eset \prec \beta_1}}{x_0 = 0}(b_{12}) \right), \\
   121 	& \quad + (-1)^{\sigma(21)} \left( \restrict{\phi_{\beta_1 \prec \beta}}{x_0 = 0}(b_{12}) - \restrict{\phi_{\eset  \prec \beta}}{x_0 = 0}(b_{12}) + \restrict{\phi_{\eset \prec \beta_1}}{x_0 = 0}(b_{12}) \right), \\
   124 \intertext{while}
   122 \intertext{while}
   125 s(\bdy(b)) & = s(b_1) - s(b_2) \\
   123 s(\bdy(b)) & = s(b_1) - s(b_2) \\
   126 		& = \restrict{\phi_{\beta_1}}{x_0=0}(b_1) - \restrict{\phi_{\eset \prec \beta_1}}{x_0=0}(b_{12}) - \restrict{\phi_{\beta_2}}{x_0=0}(b_2) + \restrict{\phi_{\eset \prec \beta_2}}{x_0=0}(b_{12}) .
   124 		& = \restrict{\phi_{\beta_1}}{x_0=0}(b_1) - \restrict{\phi_{\eset \prec \beta_1}}{x_0=0}(b_{12}) - \restrict{\phi_{\beta_2}}{x_0=0}(b_2) + \restrict{\phi_{\eset \prec \beta_2}}{x_0=0}(b_{12}) .
   127 \end{align*}
   125 \end{align*}
   128 \nn{that does indeed work, modulo signs}
   126 \nn{that does indeed work, modulo signs, with $\sigma() = 1,\sigma(1)=-1, \sigma(2)=1, \sigma(21)=-1, \sigma(12)=1$}
   129 
   127 
   130 We need to check that $s$ is a chain map, and that \todo{} the image of $s$ in fact lies in $\bc^{\cU}_*(M)$.  Calculate
   128 We need to check that $s$ is a chain map, and that \todo{} the image of $s$ in fact lies in $\bc^{\cU}_*(M)$.
       
   129 We first do some preliminary calculations, and introduce yet more notation. For $i \in \{1, \ldots, k\}^{m} \setminus \Delta$ and $1 \leq p \leq m$, we'll denote by $i \setminus i_p$ the sequence in $\{1, \ldots, k-1\}^{m-1} \setminus \Delta$ obtained by deleting the $p$-th entry of $i$, and reducing all entries which are greater than $i_p$ by one. Conversely, for $i \in \{1, \ldots, k-1\}^{m-1} \setminus \Delta$, $1 \leq p \leq m$ and $1 \leq q \leq k$, we'll denote by $i \ll_p q$ the sequence in $\{1, \ldots, k\}^{m} \setminus \Delta$ obtained by increasing any entries of $i$ which are at least $q$ by one, and inserting $q$ as the $p$-th entry, shifting later entries to the right. Note the natural bijection between the sets
       
   130 \begin{align}
       
   131 \setc{(i,p)}{i \in \{1, \ldots, k\}^{m} \setminus \Delta, 1 \leq p \leq m} & \iso \setc{(i,p,q)}{i \in \{1, \ldots, k-1\}^{m-1} \setminus \Delta, 1 \leq p \leq m, 1 \leq q \leq k} \notag \\ 
       
   132 \intertext{given by}
       
   133 (i, p) & \mapsto (i \setminus i_p, p, i_p) \label{eq:reindexing-bijection} \\
       
   134 (i \ll_p q, p) & \mapsfrom (i,p,q) \notag
       
   135 \end{align}
       
   136 which we will use in a moment to re-index a summation.
       
   137 
       
   138 We then calculate
   131 \begin{align*}
   139 \begin{align*}
   132 \bdy(s(b)) & = \sum_{m=0}^{k} \sum_{\length{i}=m} (-1)^{\sigma(i)} \ev\left(\bdy(\restrict{\phi_{i(b)}}{x_0 = 0})\tensor b_i\right) + (-1)^{\sigma(i) + m} \ev\left(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor \bdy b_i\right) \\
   140 \bdy(s(b)) & = \sum_{m=0}^{k} \sum_{i \in \{1, \ldots, k\}^{m} \setminus \Delta} (-1)^{\sigma(i)} \ev\left(\bdy(\restrict{\phi_{i(b)}}{x_0 = 0})\tensor b_i\right) + (-1)^{\sigma(i) + m} \ev\left(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor \bdy b_i\right) \\
   133                 & = \sum_{m=0}^{k} \sum_{\length{i}=m}(-1)^{\sigma(i)} \ev\left(\sum_{p=1}^m \pm \restrict{\phi_{(i\setminus i_p)(b)}}{x_0 = 0})\tensor b_i\right) + (-1)^{\sigma(i) + m} \ev\left(\restrict{\phi_{i(b)}}{x_0 = 0}\tensor \sum_{\substack{q=1 \\ q \not\in i}}^k \pm b_{i \cup \{q\}}\right) \\
   141 	& = \sum_{m=0}^{k} \sum_{i \in \{1, \ldots, k\}^{m} \setminus \Delta} \Bigg(\sum_{p=1}^m (-1)^{\sigma(i)+p+1} \ev\left(\restrict{\phi_{i(b)}}{x_0 = x_p = 0}\tensor b_i\right) \Bigg) + \\
   134 \intertext{which we telescope as}
   142 	& \qquad + (-1)^{\sigma(i) + m} \ev\left(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor \bdy b_i\right)
   135 		& = \ev \left( \restrict{\phi_\beta}{x_0=0} \tensor \sum_{q=1}^k \pm b_{\{q\}}\right) + \\
   143 \end{align*}
   136 		& \qquad + \sum_{m=1}^{k-1} \sum_{\length{i}=m} \Bigg( \sum_{q=1}^{m+1} \sum_{\substack{i^+ \\ i = i^+ \setminus i^+_q}} (-1)^{\sigma(i^+)} \ev\left(\sum_{p=1}^m \pm \restrict{\phi_{i(b)}}{x_0 = 0})\tensor b_{i^+}\right) + \\
   144 
   137 		& \qquad \qquad + (-1)^{\sigma(i) + m} \ev\left(\restrict{\phi_{i(b)}}{x_0 = 0}\tensor \sum_{\substack{q=1 \\ q \not\in i}}^k \pm b_{i \cup \{q\}}\right)\Bigg) \\
   145 \nn{Crap follows:}
   138 		& \qquad + (-1)^k \sum_{\length{i}=k}(-1)^{\sigma(i)} \ev\left(\restrict{\phi_{i(b)}}{x_0 = 0}\tensor \sum_{\substack{q=1 \\ q \not\in i}}^k \pm b_{i \cup \{q\}}\right)\\		
   146 \begin{align*}
       
   147                 & = \sum_{m=0}^{k} \sum_{i \in \{1, \ldots, k\}^{m} \setminus \Delta}(-1)^{\sigma(i)} \ev\left(\sum_{p=1}^m (-1)^{p+1} \restrict{\phi_{(i\setminus i_p)(b_{i_p})}}{x_0 = 0})\tensor (b_{i_p})_{(i \setminus i_p)}\right) + \\
       
   148                 & \qquad \qquad \qquad +  (-1)^{\sigma(i) + m} \ev\left(\restrict{\phi_{i(b)}}{x_0 = 0}\tensor \sum_{\substack{q=1 \\ q \not\in i}}^k (-1)^{q+1+\card{\setc{r}{i_r < q}}} b_{i \cup \{q\}}\right).
       
   149 \end{align*}
       
   150 Notice the first term vanishes when $m=0$, and the second term vanishes when $m=k$, so it is convenient to rearrange the terms according to the degree of the family of diffeomorphisms. We obtain
       
   151 \begin{align*}
       
   152 \bdy(s(b)) & = \sum_{m=0}^{k-1} \sum_{i \in \{1, \ldots, k\}^{m+1} \setminus \Delta}(-1)^{\sigma(i) + p + 1} \ev\left(\sum_{p=1}^{m+1} \restrict{\phi_{(i\setminus i_p)(b_{i_p})}}{x_0 = 0})\tensor (b_{i_p})_{(i \setminus i_p)}\right) + \\
       
   153                 & \qquad \sum_{m=0}^{k-1} \sum_{i \in \{1, \ldots, k\}^{m} \setminus \Delta}   (-1)^{\sigma(i) + m} \ev\left(\restrict{\phi_{i(b)}}{x_0 = 0}\tensor \sum_{\substack{q=1 \\ q \not\in i}}^k (-1)^{q+1+\card{\setc{r}{i_r < q}}} b_{i \cup \{q\}}\right) \\
       
   154 \intertext{then reindex the first sum using the bijection from Equation \eqref{eq:reindexing-bijection}, giving}
       
   155                & = \sum_{m=0}^{k-1} \sum_{i \in \{1, \ldots, k-1\}^{m} \setminus \Delta} \sum_{p=1}^{m+1} \sum_{q=1}^k (-1)^{\sigma(i \ll_p q) + p + 1} \ev\left( \restrict{\phi_{i(b_{q})}}{x_0 = 0})\tensor (b_{q})_{i}\right) + \\
       
   156                 & \qquad \sum_{m=0}^{k-1} \sum_{i \in \{1, \ldots, k\}^{m} \setminus \Delta}   (-1)^{\sigma(i) + m} \ev\left(\restrict{\phi_{i(b)}}{x_0 = 0}\tensor \sum_{\substack{q=1 \\ q \not\in i}}^k (-1)^{q+1+\card{\setc{r}{i_r < q}}} b_{i \cup \{q\}}\right) \\
       
   157 \end{align*}
       
   158 
       
   159 On the other hand, we have
       
   160 \begin{align*}
       
   161 s(\bdy b) & = \sum_{q=1}^k (-1)^{q+1} s(b_q) \\
       
   162 	       & = \sum_{q=1}^k (-1)^{q+1} \sum_{m=0}^{k-1} \sum_{i \in \{1, \ldots, k-1\}^{m} \setminus \Delta} (-1)^{\sigma(i)}  \ev(\restrict{\phi_{i(b_q)}}{x_0 = 0} \tensor (b_q)_i).
   139 \end{align*}
   163 \end{align*}
   140 \todo{to be continued...}
   164 \todo{to be continued...}
   141 
   165 
   142 Finally, we need to check that $dh+hd=i\circ s$. \todo{}
   166 Finally, we need to check that $dh+hd=i\circ s$. \todo{}
   143 \end{proof}
   167 \end{proof}