text/smallblobs.tex
changeset 168 576466ef9a68
parent 146 08bbcf3ec4d2
child 172 0f7a4042b646
equal deleted inserted replaced
167:cfab8c2189a7 168:576466ef9a68
    26 \begin{claim}
    26 \begin{claim}
    27 If $\beta$ is a collection of disjointly embedded balls in $M$, and $\varphi: B^k \to \Diff{M}$ is a map into diffeomorphisms such that for every $x\in \bdy B^k$, $\varphi(x)(\beta)$ is subordinate to $\cU$, then we can extend $\varphi$ to $\varphi:B^{k+1} \to \Diff{M}$, with the original $B^k$ as $\bdy^{\text{north}}(B^{k+1})$, and $\varphi(x)(\beta)$ subordinate to $\cU$ for every $x \in \bdy^{\text{south}}(B^{k+1})$.
    27 If $\beta$ is a collection of disjointly embedded balls in $M$, and $\varphi: B^k \to \Diff{M}$ is a map into diffeomorphisms such that for every $x\in \bdy B^k$, $\varphi(x)(\beta)$ is subordinate to $\cU$, then we can extend $\varphi$ to $\varphi:B^{k+1} \to \Diff{M}$, with the original $B^k$ as $\bdy^{\text{north}}(B^{k+1})$, and $\varphi(x)(\beta)$ subordinate to $\cU$ for every $x \in \bdy^{\text{south}}(B^{k+1})$.
    28 
    28 
    29 In fact, for a fixed $\beta$, $\Diff{M}$ retracts onto the subset $\setc{\varphi \in \Diff{M}}{\text{$\varphi(\beta)$ is subordinate to $\cU$}}$.
    29 In fact, for a fixed $\beta$, $\Diff{M}$ retracts onto the subset $\setc{\varphi \in \Diff{M}}{\text{$\varphi(\beta)$ is subordinate to $\cU$}}$.
    30 \end{claim}
    30 \end{claim}
    31 \todo{Ooooh, I hope that's true.}
    31 \nn{need to check that this is true.}
    32 
    32 
    33 We'll need a stronger version of Property \ref{property:evaluation}; while the evaluation map $ev: \CD{M} \tensor \bc_*(M) \to \bc_*(M)$ is not unique, it has an up-to-homotopy representative (satisfying the usual conditions) which restricts to become a chain map $ev: \CD{M} \tensor \bc^{\cU}_*(M) \to \bc^{\cU}_*(M)$. The proof is straightforward: when deforming the family of diffeomorphisms to shrink its supports to a union of open sets, do so such that those open sets are subordinate to the cover.
    33 We'll need a stronger version of Property \ref{property:evaluation}; while the evaluation map $ev: \CD{M} \tensor \bc_*(M) \to \bc_*(M)$ is not unique, it has an up-to-homotopy representative (satisfying the usual conditions) which restricts to become a chain map $ev: \CD{M} \tensor \bc^{\cU}_*(M) \to \bc^{\cU}_*(M)$. The proof is straightforward: when deforming the family of diffeomorphisms to shrink its supports to a union of open sets, do so such that those open sets are subordinate to the cover.
    34 
    34 
    35 Now define a map $s: \bc_*(M) \to \bc^{\cU}_*(M)$, and then a homotopy $h:\bc_*(M) \to \bc_{*+1}(M)$ so that $dh+hd=i\circ s$. The map $s: \bc_0(M) \to \bc^{\cU}_0(M)$ is just the identity; blob diagrams without blobs are automatically compatible with any cover. Given a blob diagram $b$, we'll abuse notation and write $\phi_b$ to mean $\phi_\beta$ for the blob configuration $\beta$ underlying $b$. We have
    35 Now define a map $s: \bc_*(M) \to \bc^{\cU}_*(M)$, and then a homotopy $h:\bc_*(M) \to \bc_{*+1}(M)$ so that $dh+hd=i\circ s$. The map $s: \bc_0(M) \to \bc^{\cU}_0(M)$ is just the identity; blob diagrams without blobs are automatically compatible with any cover. Given a blob diagram $b$, we'll abuse notation and write $\phi_b$ to mean $\phi_\beta$ for the blob configuration $\beta$ underlying $b$. We have
    36 $$s(b) = \sum_{i} ev(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor b_i)$$
    36 $$s(b) = \sum_{i} ev(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor b_i)$$