text/appendixes/moam.tex
changeset 499 591265710e18
parent 492 833bd74143a4
child 500 5702ddb104dc
equal deleted inserted replaced
498:b98790f0282e 499:591265710e18
     1 %!TEX root = ../../blob1.tex
     1 %!TEX root = ../../blob1.tex
     2 
     2 
     3 \section{The method of acyclic models}  \label{sec:moam}
     3 \section{The method of acyclic models}  \label{sec:moam}
     4 \todo{...}
     4 
       
     5 Let $F_*$ and $G_*$ be chain complexes.
       
     6 Assume $F_k$ has a basis $\{x_{kj}\}$
       
     7 (that is, $F_*$ is free and we have specified a basis).
       
     8 (In our applications, $\{x_{kj}\}$ will typically be singular $k$-simplices or 
       
     9 $k$-blob diagrams.)
       
    10 For each basis element $x_{kj}$ assume we have specified a ``target" $D^{kj}_*\sub G_*$.
       
    11 
       
    12 We say that a chain map $f:F_*\to G_*$ is {\it compatible} with the above data (basis and targets)
       
    13 if $f(x_{kj})\in D^{kj}_*$ for all $k$ and $j$.
       
    14 Let $\Compat(D^\bullet_*)$ denote the subcomplex of maps from $F_*$ to $G_*$
       
    15 such that the image of each higher homotopy applied to $x_{kj}$ lies in $D^{kj}_*$.
       
    16 
       
    17 \begin{thm}[Acyclic models]
       
    18 Suppose 
       
    19 \begin{itemize}
       
    20 \item $D^{k-1,l}_* \sub D^{kj}_*$ whenever $x_{k-1,l}$ occurs in $\bd x_{kj}$
       
    21 with non-zero coefficient;
       
    22 \item $D^{0j}_0$ is non-empty for all $j$; and
       
    23 \item $D^{kj}_*$ is $(k{-}1)$-acyclic (i.e.\ $H_{k-1}(D^{kj}_*) = 0$) for all $k,j$ .
       
    24 \end{itemize}
       
    25 Then $\Compat(D^\bullet_*)$ is non-empty.
       
    26 If, in addition,
       
    27 \begin{itemize}
       
    28 \item $D^{kj}_*$ is $m$-acyclic for $k\le m \le k+i$ and for all $k,j$,
       
    29 \end{itemize}
       
    30 then $\Compat(D^\bullet_*)$ is $i$-connected.
       
    31 \end{thm}
       
    32 
       
    33 \begin{proof}
       
    34 (Sketch)
       
    35 This is a standard result; see, for example, \nn{need citations}.
       
    36 
       
    37 We will build a chain map $f\in \Compat(D^\bullet_*)$ inductively.
       
    38 Choose $f(x_{0j})\in D^{0j}_0$ for all $j$.
       
    39 \nn{...}
       
    40 \end{proof}