text/ncat.tex
changeset 107 60bb1039be50
parent 106 dd4b4ac15023
child 108 631a082cd21b
equal deleted inserted replaced
106:dd4b4ac15023 107:60bb1039be50
   564 Next we consider tensor products (or, more generally, self tensor products
   564 Next we consider tensor products (or, more generally, self tensor products
   565 or coends).
   565 or coends).
   566 
   566 
   567 \nn{start with (less general) tensor products; maybe change this later}
   567 \nn{start with (less general) tensor products; maybe change this later}
   568 
   568 
   569 Define a {\it doubly marked $k$-ball} to be a triple $(B, N, N')$, where $B$ is a $k$-ball
       
   570 and $N$ and $N'$ are disjoint $k{-}1$-balls in $\bd B$.
       
   571 
       
   572 Let $\cM$ and $\cM'$ be modules for an $n$-category $\cC$.
   569 Let $\cM$ and $\cM'$ be modules for an $n$-category $\cC$.
   573 (If $k=1$ and manifolds are oriented, then one should be 
   570 (If $k=1$ and manifolds are oriented, then one should be 
   574 a left module and the other a right module.)
   571 a left module and the other a right module.)
       
   572 We will define an $n{-}1$-category $\cM\ot_\cC\cM'$, which depend (functorially)
       
   573 on a choice of 1-ball (interval) $J$.
       
   574 
       
   575 Define a {\it doubly marked $k$-ball} to be a triple $(B, N, N')$, where $B$ is a $k$-ball
       
   576 and $N$ and $N'$ are disjoint $k{-}1$-balls in $\bd B$.
       
   577 
   575 Let $D = (B, N, N')$ be a doubly marked $k$-ball, $1\le k \le n$.
   578 Let $D = (B, N, N')$ be a doubly marked $k$-ball, $1\le k \le n$.
   576 We will define a set $\cM\ot_\cC\cM'(D)$.
   579 We will define a set $\cM\ot_\cC\cM'(D)$.
   577 (If $k = n$ and our $k$-categories are enriched, then
   580 (If $k = n$ and our $k$-categories are enriched, then
   578 $\cM\ot_\cC\cM'(D)$ will have additional structure; see below.)
   581 $\cM\ot_\cC\cM'(D)$ will have additional structure; see below.)
   579 $\cM\ot_\cC\cM'(D)$ will be the colimit of a functor defined on a category $\cJ(D)$,
   582 $\cM\ot_\cC\cM'(D)$ will be the colimit of a functor defined on a category $\cJ(D)$,
   594 \nn{need figures}
   597 \nn{need figures}
   595 
   598 
   596 $\cC$, $\cM$ and $\cM'$ determine 
   599 $\cC$, $\cM$ and $\cM'$ determine 
   597 a functor $\psi$ from $\cJ(D)$ to the category of sets 
   600 a functor $\psi$ from $\cJ(D)$ to the category of sets 
   598 (possibly with additional structure if $k=n$).
   601 (possibly with additional structure if $k=n$).
   599 For a decomposition $x = (X_a, M_b, M'_c)$ in $\cJ(D)$, define $\psi(x)$ to subset
   602 For a decomposition $x = (X_a, M_b, M'_c)$ in $\cJ(D)$, define $\psi(x)$ to be the subset
   600 \[
   603 \[
   601 	\psi(x) \sub (\prod_a \cC(X_a)) \prod (\prod_b \cM(M_b)) \prod (\prod_c \cM'(M'_c))
   604 	\psi(x) \sub (\prod_a \cC(X_a)) \prod (\prod_b \cM(M_b)) \prod (\prod_c \cM'(M'_c))
   602 \]
   605 \]
   603 such that the restrictions to the various pieces of shared boundaries amongst the
   606 such that the restrictions to the various pieces of shared boundaries amongst the
   604 $X_a$, $M_b$ and $M'_c$ all agree.
   607 $X_a$, $M_b$ and $M'_c$ all agree.
   609 Finally, define $\cM\ot_\cC\cM'(D)$ to be the colimit of $\psi$.
   612 Finally, define $\cM\ot_\cC\cM'(D)$ to be the colimit of $\psi$.
   610 In other words, for each decomposition $x$ there is a map
   613 In other words, for each decomposition $x$ there is a map
   611 $\psi(x)\to \cM\ot_\cC\cM'(D)$, these maps are compatible with the refinement maps
   614 $\psi(x)\to \cM\ot_\cC\cM'(D)$, these maps are compatible with the refinement maps
   612 above, and $\cM\ot_\cC\cM'(D)$ is universal with respect to these properties.
   615 above, and $\cM\ot_\cC\cM'(D)$ is universal with respect to these properties.
   613 
   616 
       
   617 Define a {\it marked $k$-annulus} to be a manifold homeomorphic
       
   618 to $S^{k-1}\times I$, with its entire boundary ``marked".
       
   619 Define the boundary of a doubly marked $k$-ball $(B, N, N')$ to be the marked
       
   620 $k{-}1$-annulus $\bd B \setmin(N\cup N')$.
       
   621 
       
   622 Using a colimit construction similar to the one above, we can define a set
       
   623 $\cM\ot_\cC\cM'(A)$ for any marked $k$-annulus $A$ (for $k < n$).
       
   624 
       
   625 $\cM\ot_\cC\cM'$ is (among other things) a functor from the category of 
       
   626 doubly marked $k$-balls ($k\le n$) and homeomorphisms to the category of sets.
       
   627 We have other functors, also denoted $\cM\ot_\cC\cM'$, from the category of 
       
   628 marked $k$-annuli ($k < n$) and homeomorphisms to the category of sets.
       
   629 
       
   630 For each marked $k$-ball $D$ there is a restriction map
       
   631 \[
       
   632 	\bd : \cM\ot_\cC\cM(D) \to \cM\ot_\cC\cM(\bd D) .
       
   633 \]
       
   634 These maps comprise a natural transformation of functors.
       
   635 \nn{possible small problem: might need to define $\cM$ of a singly marked annulus}
       
   636 
       
   637 For $c \in \cM\ot_\cC\cM(\bd D)$, let 
       
   638 \[
       
   639 	\cM\ot_\cC\cM(D; c) \deq \bd\inv(c) .
       
   640 \]
       
   641 
   614 Note that if $k=n$ and we fix boundary conditions $c$ on the unmarked boundary of $D$,
   642 Note that if $k=n$ and we fix boundary conditions $c$ on the unmarked boundary of $D$,
   615 then $\cM\ot_\cC\cM'(D; c)$ will be an object in the enriching category
   643 then $\cM\ot_\cC\cM'(D; c)$ will be an object in the enriching category
   616 (e.g.\ vector space or chain complex).
   644 (e.g.\ vector space or chain complex).
   617 \nn{say this more precisely?}
   645 
       
   646 Let $J$ be a doubly marked 1-ball (i.e. an interval, where we think of both endpoints
       
   647 as marked).
       
   648 For $X$ a plain $k$-ball ($k \le n-1$) or $k$-sphere ($k \le n-2$), define
       
   649 \[
       
   650 	\cM\ot_\cC\cM'(X) \deq \cM\ot_\cC\cM'(X\times J) .
       
   651 \]
       
   652 We claim that $\cM\ot_\cC\cM'$ has the structure of an $n{-}1$-category.
       
   653 We have already defined restriction maps $\bd : \cM\ot_\cC\cM'(X) \to 
       
   654 \cM\ot_\cC\cM'(\bd X)$.
       
   655 The only data for the $n{-}1$-category that we have not defined yet are the product
       
   656 morphisms.
       
   657 \nn{so next define those}
       
   658 
       
   659 \nn{need to check whether any of the steps in verifying that we have
       
   660 an $n{-}1$-category are non-trivial.}
       
   661 
       
   662 
       
   663 
       
   664 
   618 
   665 
   619 \medskip
   666 \medskip
   620 \hrule
   667 \hrule
   621 \medskip
   668 \medskip
   622 
   669 
   625 
   672 
   626 
   673 
   627 Stuff that remains to be done (either below or in an appendix or in a separate section or in
   674 Stuff that remains to be done (either below or in an appendix or in a separate section or in
   628 a separate paper):
   675 a separate paper):
   629 \begin{itemize}
   676 \begin{itemize}
   630 \item tensor products
       
   631 \item traditional $n$-cat defs (e.g. *-1-cat, pivotal 2-cat) imply our def of plain $n$-cat
   677 \item traditional $n$-cat defs (e.g. *-1-cat, pivotal 2-cat) imply our def of plain $n$-cat
   632 \item conversely, our def implies other defs
   678 \item conversely, our def implies other defs
   633 \item do same for modules; maybe an appendix on relating topological
   679 \item do same for modules; maybe an appendix on relating topological
   634 vs traditional defs, $n = 1,2$, $A_\infty$ or not, cats, modules, tensor products
   680 vs traditional defs, $n = 1,2$, $A_\infty$ or not, cats, modules, tensor products
   635 \item traditional $A_\infty$ 1-cat def implies our def
   681 \item traditional $A_\infty$ 1-cat def implies our def