text/ncat.tex
changeset 546 689ef4edbdd7
parent 543 0bc6fa29b62a
child 547 fbad527790c1
equal deleted inserted replaced
545:8f33a46597c4 546:689ef4edbdd7
   173 which is natural with respect to the actions of homeomorphisms.
   173 which is natural with respect to the actions of homeomorphisms.
   174 (When $k=1$ we stipulate that $\cl{\cC}(E)$ is a point, so that the above fibered product
   174 (When $k=1$ we stipulate that $\cl{\cC}(E)$ is a point, so that the above fibered product
   175 becomes a normal product.)
   175 becomes a normal product.)
   176 \end{lem}
   176 \end{lem}
   177 
   177 
   178 \begin{figure}[!ht]
   178 \begin{figure}[!ht] \centering
   179 $$
       
   180 \begin{tikzpicture}[%every label/.style={green}
   179 \begin{tikzpicture}[%every label/.style={green}
   181 ]
   180 ]
   182 \node[fill=black, circle, label=below:$E$, inner sep=1.5pt](S) at (0,0) {};
   181 \node[fill=black, circle, label=below:$E$, inner sep=1.5pt](S) at (0,0) {};
   183 \node[fill=black, circle, label=above:$E$, inner sep=1.5pt](N) at (0,2) {};
   182 \node[fill=black, circle, label=above:$E$, inner sep=1.5pt](N) at (0,2) {};
   184 \draw (S) arc  (-90:90:1);
   183 \draw (S) arc  (-90:90:1);
   185 \draw (N) arc  (90:270:1);
   184 \draw (N) arc  (90:270:1);
   186 \node[left] at (-1,1) {$B_1$};
   185 \node[left] at (-1,1) {$B_1$};
   187 \node[right] at (1,1) {$B_2$};
   186 \node[right] at (1,1) {$B_2$};
   188 \end{tikzpicture}
   187 \end{tikzpicture}
   189 $$
       
   190 \caption{Combining two balls to get a full boundary.}\label{blah3}\end{figure}
   188 \caption{Combining two balls to get a full boundary.}\label{blah3}\end{figure}
   191 
   189 
   192 Note that we insist on injectivity above. 
   190 Note that we insist on injectivity above. 
   193 The lemma follows from Definition \ref{def:colim-fields} and Lemma \ref{lem:colim-injective}.
   191 The lemma follows from Definition \ref{def:colim-fields} and Lemma \ref{lem:colim-injective}.
   194 %\nn{we might want a more official looking proof...}
   192 %\nn{we might want a more official looking proof...}
   230 \[
   228 \[
   231 	\gl_Y : \cC(B_1)_E \times_{\cC(Y)} \cC(B_2)_E \to \cC(B)_E
   229 	\gl_Y : \cC(B_1)_E \times_{\cC(Y)} \cC(B_2)_E \to \cC(B)_E
   232 \]
   230 \]
   233 which is natural with respect to the actions of homeomorphisms, and also compatible with restrictions
   231 which is natural with respect to the actions of homeomorphisms, and also compatible with restrictions
   234 to the intersection of the boundaries of $B$ and $B_i$.
   232 to the intersection of the boundaries of $B$ and $B_i$.
   235 If $k < n$ we require that $\gl_Y$ is injective.
   233 If $k < n$,
   236 (For $k=n$, see below.)
   234 or if $k=n$ and we are in the $A_\infty$ case, 
       
   235 we require that $\gl_Y$ is injective.
       
   236 (For $k=n$ in the plain (non-$A_\infty$) case, see below.)
   237 \end{axiom}
   237 \end{axiom}
   238 
   238 
   239 \begin{figure}[!ht]
   239 \begin{figure}[!ht] \centering
   240 $$
       
   241 \begin{tikzpicture}[%every label/.style={green},
   240 \begin{tikzpicture}[%every label/.style={green},
   242 				x=1.5cm,y=1.5cm]
   241 				x=1.5cm,y=1.5cm]
   243 \node[fill=black, circle, label=below:$E$, inner sep=2pt](S) at (0,0) {};
   242 \node[fill=black, circle, label=below:$E$, inner sep=2pt](S) at (0,0) {};
   244 \node[fill=black, circle, label=above:$E$, inner sep=2pt](N) at (0,2) {};
   243 \node[fill=black, circle, label=above:$E$, inner sep=2pt](N) at (0,2) {};
   245 \draw (S) arc  (-90:90:1);
   244 \draw (S) arc  (-90:90:1);
   247 \draw (N) -- (S);
   246 \draw (N) -- (S);
   248 \node[left] at (-1/4,1) {$B_1$};
   247 \node[left] at (-1/4,1) {$B_1$};
   249 \node[right] at (1/4,1) {$B_2$};
   248 \node[right] at (1/4,1) {$B_2$};
   250 \node at (1/6,3/2)  {$Y$};
   249 \node at (1/6,3/2)  {$Y$};
   251 \end{tikzpicture}
   250 \end{tikzpicture}
   252 $$
       
   253 \caption{From two balls to one ball.}\label{blah5}\end{figure}
   251 \caption{From two balls to one ball.}\label{blah5}\end{figure}
   254 
   252 
   255 \begin{axiom}[Strict associativity] \label{nca-assoc}
   253 \begin{axiom}[Strict associativity] \label{nca-assoc}
   256 The composition (gluing) maps above are strictly associative.
   254 The composition (gluing) maps above are strictly associative.
   257 Given any splitting of a ball $B$ into smaller balls
   255 Given any splitting of a ball $B$ into smaller balls
  1166 $$(\text{standard $k$-ball}, \text{northern hemisphere in boundary of standard $k$-ball}).$$
  1164 $$(\text{standard $k$-ball}, \text{northern hemisphere in boundary of standard $k$-ball}).$$
  1167 We call $B$ the ball and $N$ the marking.
  1165 We call $B$ the ball and $N$ the marking.
  1168 A homeomorphism between marked $k$-balls is a homeomorphism of balls which
  1166 A homeomorphism between marked $k$-balls is a homeomorphism of balls which
  1169 restricts to a homeomorphism of markings.
  1167 restricts to a homeomorphism of markings.
  1170 
  1168 
  1171 \begin{module-axiom}[Module morphisms]
  1169 \begin{module-axiom}[Module morphisms] \label{module-axiom-funct}
  1172 {For each $0 \le k \le n$, we have a functor $\cM_k$ from 
  1170 {For each $0 \le k \le n$, we have a functor $\cM_k$ from 
  1173 the category of marked $k$-balls and 
  1171 the category of marked $k$-balls and 
  1174 homeomorphisms to the category of sets and bijections.}
  1172 homeomorphisms to the category of sets and bijections.}
  1175 \end{module-axiom}
  1173 \end{module-axiom}
  1176 
  1174 
  1274 \[
  1272 \[
  1275 	\gl_Y : \cM(M_1)_E \times_{\cM(Y)} \cM(M_2)_E \to \cM(M)_E
  1273 	\gl_Y : \cM(M_1)_E \times_{\cM(Y)} \cM(M_2)_E \to \cM(M)_E
  1276 \]
  1274 \]
  1277 which is natural with respect to the actions of homeomorphisms, and also compatible with restrictions
  1275 which is natural with respect to the actions of homeomorphisms, and also compatible with restrictions
  1278 to the intersection of the boundaries of $M$ and $M_i$.
  1276 to the intersection of the boundaries of $M$ and $M_i$.
  1279 If $k < n$ we require that $\gl_Y$ is injective.
  1277 If $k < n$,
  1280 (For $k=n$, see below.)}
  1278 or if $k=n$ and we are in the $A_\infty$ case, 
       
  1279 we require that $\gl_Y$ is injective.
       
  1280 (For $k=n$ in the plain (non-$A_\infty$) case, see below.)}
  1281 \end{module-axiom}
  1281 \end{module-axiom}
  1282 
  1282 
  1283 
  1283 
  1284 Second, we can compose an $n$-category morphism with a module morphism to get another
  1284 Second, we can compose an $n$-category morphism with a module morphism to get another
  1285 module morphism.
  1285 module morphism.
  1296 \[
  1296 \[
  1297 	\gl_Y :\cC(X)_E \times_{\cC(Y)} \cM(M')_E \to \cM(M)_E
  1297 	\gl_Y :\cC(X)_E \times_{\cC(Y)} \cM(M')_E \to \cM(M)_E
  1298 \]
  1298 \]
  1299 which is natural with respect to the actions of homeomorphisms, and also compatible with restrictions
  1299 which is natural with respect to the actions of homeomorphisms, and also compatible with restrictions
  1300 to the intersection of the boundaries of $X$ and $M'$.
  1300 to the intersection of the boundaries of $X$ and $M'$.
  1301 If $k < n$ we require that $\gl_Y$ is injective.
  1301 If $k < n$,
  1302 (For $k=n$, see below.)}
  1302 or if $k=n$ and we are in the $A_\infty$ case, 
       
  1303 we require that $\gl_Y$ is injective.
       
  1304 (For $k=n$ in the plain (non-$A_\infty$) case, see below.)}
  1303 \end{module-axiom}
  1305 \end{module-axiom}
  1304 
  1306 
  1305 \begin{module-axiom}[Strict associativity]
  1307 \begin{module-axiom}[Strict associativity]
  1306 The composition and action maps above are strictly associative.
  1308 The composition and action maps above are strictly associative.
  1307 Given any decomposition of a large marked ball into smaller marked and unmarked balls
  1309 Given any decomposition of a large marked ball into smaller marked and unmarked balls
  1502 This is a module over the fundamental $n$-category $\pi_{\leq n}(S)$ of $S$, from Example \ref{ex:maps-to-a-space}.
  1504 This is a module over the fundamental $n$-category $\pi_{\leq n}(S)$ of $S$, from Example \ref{ex:maps-to-a-space}.
  1503 \end{example}
  1505 \end{example}
  1504 Modifications corresponding to Examples \ref{ex:maps-to-a-space-with-a-fiber} and 
  1506 Modifications corresponding to Examples \ref{ex:maps-to-a-space-with-a-fiber} and 
  1505 \ref{ex:linearized-maps-to-a-space} are also possible, and there is an $A_\infty$ version analogous to 
  1507 \ref{ex:linearized-maps-to-a-space} are also possible, and there is an $A_\infty$ version analogous to 
  1506 Example \ref{ex:chains-of-maps-to-a-space} given by taking singular chains.
  1508 Example \ref{ex:chains-of-maps-to-a-space} given by taking singular chains.
       
  1509 
       
  1510 
       
  1511 
       
  1512 
  1507 
  1513 
  1508 \subsection{Modules as boundary labels (colimits for decorated manifolds)}
  1514 \subsection{Modules as boundary labels (colimits for decorated manifolds)}
  1509 \label{moddecss}
  1515 \label{moddecss}
  1510 
  1516 
  1511 Fix a topological $n$-category or $A_\infty$ $n$-category  $\cC$.
  1517 Fix a topological $n$-category or $A_\infty$ $n$-category  $\cC$.
  1581 on the choice of 1-ball $J$.
  1587 on the choice of 1-ball $J$.
  1582 
  1588 
  1583 We will define a more general self tensor product (categorified coend) below.
  1589 We will define a more general self tensor product (categorified coend) below.
  1584 
  1590 
  1585 
  1591 
  1586 \subsection{Morphisms of \texorpdfstring{$A_\infty$}{A-infinity} 1-category modules}
  1592 
       
  1593 
       
  1594 \subsection{Morphisms of modules}
  1587 \label{ss:module-morphisms}
  1595 \label{ss:module-morphisms}
  1588 
  1596 
  1589 In order to state and prove our version of the higher dimensional Deligne conjecture
  1597 Modules are collections of functors together with some additional data, so we define morphisms
  1590 (\S\ref{sec:deligne}),
  1598 of modules to be collections of natural transformations which are compatible with this
  1591 we need to define morphisms of $A_\infty$ $1$-category modules and establish
  1599 additional data.
  1592 some of their elementary properties.
  1600 
  1593 
  1601 More specifically, let $\cX$ and $\cY$ be $\cC$ modules, i.e.\ collections of functors
  1594 To motivate the definitions which follow, consider algebras $A$ and $B$, 
  1602 $\{\cX_k\}$ and $\{\cY_k\}$, for $0\le k\le n$, from marked $k$-balls to sets 
  1595 right modules $X_B$ and $Z_A$ and a bimodule $\leftidx{_B}{Y}{_A}$, and the familiar adjunction
  1603 as in Module Axiom \ref{module-axiom-funct}.
  1596 \begin{eqnarray*}
  1604 A morphism $g:\cX\to\cY$ is a collection of natural transformations $g_k:\cX_k\to\cY_k$
  1597 	\hom_A(X_B\ot {_BY_A} \to Z_A) &\cong& \hom_B(X_B \to \hom_A( {_BY_A} \to Z_A)) \\
  1605 satisfying:
  1598 	f &\mapsto& [x \mapsto f(x\ot -)] \\
  1606 \begin{itemize}
  1599 	{}[x\ot y \mapsto g(x)(y)] & \mapsfrom & g .
  1607 \item Each $g_k$ commutes with $\bd$.
  1600 \end{eqnarray*}
  1608 \item Each $g_k$ commutes with gluing (module composition and $\cC$ action).
  1601 If $A$ and $Z_A$ are both the ground field $\k$, this simplifies to
  1609 \item Each $g_k$ commutes with taking products.
  1602 \[
  1610 \item In the top dimension $k=n$, $g_n$ preserves whatever additional structure we are enriching over (e.g.\ vector
  1603 	(X_B\ot {_BY})^* \cong  \hom_B(X_B \to (_BY)^*) .
  1611 spaces).
  1604 \]
  1612 In the $A_\infty$ case (e.g.\ enriching over chain complexes) $g_n$ should live in 
  1605 We would like to have the analogous isomorphism for a topological $A_\infty$ 1-cat $\cC$
  1613 an appropriate derived hom space, as described below.
  1606 and modules $\cM_\cC$ and $_\cC\cN$,
  1614 \end{itemize}
  1607 \[
  1615 
  1608 	(\cM_\cC\ot {_\cC\cN})^* \cong  \hom_\cC(\cM_\cC \to (_\cC\cN)^*) .
  1616 We will be mainly interested in the case $n=1$ and enriched over chain complexes,
  1609 \]
  1617 since this is the case that's relevant to the generalized Deligne conjecture of \S\ref{sec:deligne}.
  1610 
  1618 So we treat this case in more detail.
  1611 In the next few paragraphs we define the objects appearing in the above equation:
  1619 
  1612 $\cM_\cC\ot {_\cC\cN}$, $(\cM_\cC\ot {_\cC\cN})^*$, $(_\cC\cN)^*$ and finally
  1620 First we explain the remark about derived hom above.
  1613 $\hom_\cC$.
  1621 Let $L$ be a marked 1-ball and let $\cl{\cX}(L)$ denote the local homotopy colimit construction
  1614 (Actually, we give only an incomplete definition of $(_\cC\cN)^*$, but since we are only trying to motivate the 
  1622 associated to $L$ by $\cX$ and $\cC$.
  1615 definition of $\hom_\cC$, this will suffice for our purposes.)
  1623 (See \S \ref{ss:ncat_fields} and \S \ref{moddecss}.)
  1616 
  1624 Define $\cl{\cY}(L)$ similarly.
  1617 \def\olD{{\overline D}}
  1625 For $K$ an unmarked 1-ball let $\cl{\cC(K)}$ denote the local homotopy colimit
  1618 \def\cbar{{\bar c}}
  1626 construction associated to $K$ by $\cC$.
  1619 In the previous subsection we defined a tensor product of $A_\infty$ $n$-category modules
  1627 Then we have an injective gluing map
  1620 for general $n$.
  1628 \[
  1621 For $n=1$ this definition is a homotopy colimit indexed by subdivisions of a fixed interval $J$
  1629 	\gl: \cl{\cX}(L) \ot \cl{\cC}(K) \to \cl{\cX}(L\cup K) 
  1622 and their gluings (antirefinements).
  1630 \]
  1623 (This tensor product depends functorially on the choice of $J$.)
  1631 which is also a chain map.
  1624 To a subdivision $D$
  1632 (For simplicity we are suppressing mention of boundary conditions on the unmarked 
  1625 \[
  1633 boundary components of the 1-balls.)
  1626 	J = I_1\cup \cdots\cup I_p
  1634 We define $\hom_\cC(\cX \to \cY)$ to be a collection of (graded linear) natural transformations
  1627 \]
  1635 $g: \cl{\cX}(L)\to \cl{\cY}(L)$ such that the following diagram commutes for all $L$ and $K$:
  1628 we associate the chain complex
       
  1629 \[
       
  1630 	\psi(D) = \cM(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_{m-1})\ot\cN(I_m) .
       
  1631 \]
       
  1632 To each antirefinement we associate a chain map using the composition law of $\cC$ and the 
       
  1633 module actions of $\cC$ on $\cM$ and $\cN$.
       
  1634 The underlying graded vector space of the homotopy colimit is
       
  1635 \[
       
  1636 	\bigoplus_l \bigoplus_{\olD} \psi(D_0)[l] ,
       
  1637 \]
       
  1638 where $l$ runs through the natural numbers, $\olD = (D_0\to D_1\to\cdots\to D_l)$
       
  1639 runs through chains of antirefinements of length $l+1$, and $[l]$ denotes a grading shift.
       
  1640 We will denote an element of the summand indexed by $\olD$ by
       
  1641 $\olD\ot m\ot\cbar\ot n$, where $m\ot\cbar\ot n \in \psi(D_0)$.
       
  1642 The boundary map is given by
       
  1643 \begin{align*}
       
  1644 	\bd(\olD\ot m\ot\cbar\ot n) &= (\bd_0 \olD)\ot \rho(m\ot\cbar\ot n) + (\bd_+ \olD)\ot m\ot\cbar\ot n \; + \\
       
  1645 	& \qquad + (-1)^l \olD\ot\bd m\ot\cbar\ot n + (-1)^{l+\deg m}  \olD\ot m\ot\bd \cbar\ot n + \\
       
  1646 	& \qquad + (-1)^{l+\deg m + \deg \cbar}  \olD\ot m\ot \cbar\ot \bd n
       
  1647 \end{align*}
       
  1648 where $\bd_+ \olD = \sum_{i>0} (-1)^i (D_0\to \cdots \to \widehat{D_i} \to \cdots \to D_l)$ (those parts of the simplicial
       
  1649 boundary which retain $D_0$), $\bd_0 \olD = (D_1 \to \cdots \to D_l)$,
       
  1650 and $\rho$ is the gluing map associated to the antirefinement $D_0\to D_1$.
       
  1651 
       
  1652 $(\cM_\cC\ot {_\cC\cN})^*$ is just the dual chain complex to $\cM_\cC\ot {_\cC\cN}$:
       
  1653 \[
       
  1654 	\prod_l \prod_{\olD} (\psi(D_0)[l])^* ,
       
  1655 \]
       
  1656 where $(\psi(D_0)[l])^*$ denotes the linear dual.
       
  1657 The boundary is given by
       
  1658 \begin{align}
       
  1659 \label{eq:tensor-product-boundary}
       
  1660 	 (-1)^{\deg f +1} (\bd f)(\olD\ot m\ot\cbar\ot n) & = f((\bd_0 \olD)\ot \rho(m\ot\cbar\ot n)) +  f((\bd_+ \olD)\ot m\ot\cbar\ot n) + \\
       
  1661 						     & \qquad + (-1)^{l} f(\olD\ot\bd m\ot\cbar \ot n)  + (-1)^{l + \deg m} f(\olD\ot m\ot\bd \cbar \ot n)  + \notag \\
       
  1662 			& \qquad	 + (-1)^{l + \deg m + \deg \cbar} f(\olD\ot m\ot\cbar\ot \bd n). \notag
       
  1663 \end{align}
       
  1664 
       
  1665 Next we partially define the dual module $(_\cC\cN)^*$.
       
  1666 This will depend on a choice of interval $J$, just as the tensor product did.
       
  1667 Recall that $_\cC\cN$ is, among other things, a functor from right-marked intervals
       
  1668 to chain complexes.
       
  1669 Given $J$, we define for each $K\sub J$ which contains the {\it left} endpoint of $J$
       
  1670 \[
       
  1671 	(_\cC\cN)^*(K) \deq ({_\cC\cN}(J\setmin K))^* ,
       
  1672 \]
       
  1673 where $({_\cC\cN}(J\setmin K))^*$ denotes the (linear) dual of the chain complex associated
       
  1674 to the right-marked interval $J\setmin K$.
       
  1675 We define the action map
       
  1676 \[
       
  1677 	(_\cC\cN)^*(K) \ot \cC(I) \to (_\cC\cN)^*(K\cup I)
       
  1678 \]
       
  1679 to be the (partial) adjoint of the map
       
  1680 \[
       
  1681 	\cC(I)\ot {_\cC\cN}(J\setmin (K\cup I)) \to  {_\cC\cN}(J\setmin K) .
       
  1682 \]
       
  1683 This falls short of fully defining the module $(_\cC\cN)^*$ (in particular,
       
  1684 we have no action of homeomorphisms of left-marked intervals), but it will be enough to motivate
       
  1685 the definition of $\hom_\cC$ below.
       
  1686 
       
  1687 Now we reinterpret $(\cM_\cC\ot {_\cC\cN})^*$
       
  1688 as some sort of morphism $\cM_\cC \to (_\cC\cN)^*$.
       
  1689 Let $f\in (\cM_\cC\ot {_\cC\cN})^*$.
       
  1690 Let $\olD = (D_0\cdots D_l)$ be a chain of subdivisions with $D_0 = [J = I_1\cup\cdots\cup I_m]$.
       
  1691 Recall that for any subdivision $J = I_1\cup\cdots\cup I_p$, $(_\cC\cN)^*(I_1\cup\cdots\cup I_{p-1}) = (_\cC\cN(I_p))^*$.
       
  1692 Then for each such $\olD$ we have a degree $l$ map
       
  1693 \begin{eqnarray*}
       
  1694 	\cM(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_{p-1}) &\to& (_\cC\cN)^*(I_1\cup\cdots\cup I_{p-1}) \\
       
  1695 	m\ot \cbar &\mapsto& [n\mapsto f(\olD\ot m\ot \cbar\ot n)]
       
  1696 \end{eqnarray*}
       
  1697 
       
  1698 We are almost ready to give the definition of morphisms between arbitrary modules
       
  1699 $\cX_\cC$ and $\cY_\cC$.
       
  1700 Note that the rightmost interval $I_m$ does not appear above, except implicitly in $\olD$.
       
  1701 To fix this, we define subdivisions as antirefinements of left-marked intervals.
       
  1702 Subdivisions are just the obvious thing, but antirefinements are defined to mimic
       
  1703 the above antirefinements of the fixed interval $J$, but with the rightmost subinterval $I_m$ always
       
  1704 omitted.
       
  1705 More specifically, $D\to D'$ is an antirefinement if $D'$ is obtained from $D$ by 
       
  1706 gluing subintervals together and/or omitting some of the rightmost subintervals.
       
  1707 (See Figure \ref{fig:lmar}.)
       
  1708 \begin{figure}[t] \centering
       
  1709 \definecolor{arcolor}{rgb}{.75,.4,.1}
       
  1710 \begin{tikzpicture}[line width=1pt]
       
  1711 \fill (0,0) circle (.1);
       
  1712 \draw (0,0) -- (2,0);
       
  1713 \draw (1,0.1) -- (1,-0.1);
       
  1714 
       
  1715 \draw [->, arcolor] (1,0.25) -- (1,0.75);
       
  1716 
       
  1717 \fill (0,1) circle (.1);
       
  1718 \draw (0,1) -- (2,1);
       
  1719 \end{tikzpicture}
       
  1720 \qquad
       
  1721 \begin{tikzpicture}[line width=1pt]
       
  1722 \fill (0,0) circle (.1);
       
  1723 \draw (0,0) -- (2,0);
       
  1724 \draw (1,0.1) -- (1,-0.1);
       
  1725 
       
  1726 \draw [->, arcolor] (1,0.25) -- (1,0.75);
       
  1727 
       
  1728 \fill (0,1) circle (.1);
       
  1729 \draw (0,1) -- (1,1);
       
  1730 \end{tikzpicture}
       
  1731 \qquad
       
  1732 \begin{tikzpicture}[line width=1pt]
       
  1733 \fill (0,0) circle (.1);
       
  1734 \draw (0,0) -- (3,0);
       
  1735 \foreach \x in {0.5, 1.0, 1.25, 1.5, 2.0, 2.5} {
       
  1736 	\draw (\x,0.1) -- (\x,-0.1);
       
  1737 }
       
  1738 
       
  1739 \draw [->, arcolor] (1,0.25) -- (1,0.75);
       
  1740 
       
  1741 \fill (0,1) circle (.1);
       
  1742 \draw (0,1) -- (2,1);
       
  1743 \foreach \x in {1.0, 1.5} {
       
  1744 	\draw (\x,1.1) -- (\x,0.9);
       
  1745 }
       
  1746 
       
  1747 \end{tikzpicture}
       
  1748 \caption{Antirefinements of left-marked intervals}\label{fig:lmar}\end{figure}
       
  1749 
       
  1750 Now we define the chain complex $\hom_\cC(\cX_\cC \to \cY_\cC)$.
       
  1751 The underlying vector space is 
       
  1752 \[
       
  1753 	\prod_l \prod_{\olD} \hom[l]\left(
       
  1754 				\cX(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_{p-1}) \to 
       
  1755 							\cY(I_1\cup\cdots\cup I_{p-1}) \rule{0pt}{1.1em}\right) ,
       
  1756 \]
       
  1757 where, as usual $\olD = (D_0\cdots D_l)$ is a chain of antirefinements
       
  1758 (but now of left-marked intervals) and $D_0$ is the subdivision $I_1\cup\cdots\cup I_{p-1}$.
       
  1759 $\hom[l](- \to -)$ means graded linear maps of degree $l$.
       
  1760 
       
  1761 \nn{small issue (pun intended): 
       
  1762 the above is a vector space only if the class of subdivisions is a set, e.g. only if
       
  1763 all of our left-marked intervals are contained in some universal interval (like $J$ above).
       
  1764 perhaps we should give another version of the definition in terms of natural transformations of functors.}
       
  1765 
       
  1766 Abusing notation slightly, we will denote elements of the above space by $g$, with
       
  1767 \[
       
  1768 	\olD\ot x \ot \cbar \mapsto g(\olD\ot x \ot \cbar) \in \cY(I_1\cup\cdots\cup I_{p-1}) .
       
  1769 \]
       
  1770 For fixed $D_0$ and $D_1$, let $\cbar = \cbar'\ot\cbar''$, 
       
  1771 where $\cbar'$ corresponds to the subintervals of $D_0$ which map to $D_1$ and 
       
  1772 $\cbar''$ corresponds to the subintervals
       
  1773 which are dropped off the right side.
       
  1774 (If no such subintervals are dropped, then $\cbar''$ is empty.)
       
  1775 Translating from the boundary map for $(\cM_\cC\ot {_\cC\cN})^*$  appearing in Equation \eqref{eq:tensor-product-boundary},
       
  1776 we have
       
  1777 \begin{eqnarray*}
       
  1778 	(\bd g)(\olD\ot x \ot \cbar) &=& \bd(g(\olD\ot x \ot \cbar)) + g(\olD\ot\bd(x\ot\cbar)) + \\
       
  1779 	& & \;\; g((\bd_+\olD)\ot x\ot\cbar) + \gl''(g((\bd_0\olD)\ot \gl'(x\ot\cbar'))\ot\cbar'') .
       
  1780 \end{eqnarray*}
       
  1781 \nn{put in signs, rearrange terms to match order in previous formulas}
       
  1782 Here $\gl''$ denotes the module action in $\cY_\cC$
       
  1783 and $\gl'$ denotes the module action in $\cX_\cC$.
       
  1784 This completes the definition of $\hom_\cC(\cX_\cC \to \cY_\cC)$.
       
  1785 
       
  1786 Note that if $\bd g = 0$, then each 
       
  1787 \[
       
  1788 	g(\olD\ot -) : \cX(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_{p-1}) \to \cY(I_1\cup\cdots\cup I_{p-1})
       
  1789 \]
       
  1790 constitutes a null homotopy of
       
  1791 $g((\bd \olD)\ot -)$ (where the $g((\bd_0 \olD)\ot -)$ part of $g((\bd \olD)\ot -)$
       
  1792 should be interpreted as above).
       
  1793 
       
  1794 Define a {\it strong morphism} 
       
  1795 of modules to be a collection of {\it chain} maps
       
  1796 \[
       
  1797 	h_K : \cX(K)\to \cY(K)
       
  1798 \]
       
  1799 for each left-marked interval $K$.
       
  1800 These are required to commute with gluing;
       
  1801 for each subdivision $K = I_1\cup\cdots\cup I_q$ the following diagram commutes:
       
  1802 \[ \xymatrix{
  1636 \[ \xymatrix{
  1803 	\cX(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_q) \ar[r]^{h_{I_1}\ot \id} 
  1637 	\cl{\cX}(L) \ot \cl{\cC}(K) \ar[r]^{\gl} \ar[d]_{g\ot \id} & \cl{\cX}(L\cup K) \ar[d]^{g}\\
  1804 							\ar[d]_{\gl} & \cY(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_q) 
  1638 	\cl{\cY}(L) \ot \cl{\cC}(K) \ar[r]^{\gl} & \cl{\cY}(L\cup K)
  1805 								\ar[d]^{\gl} \\
       
  1806 	\cX(K) \ar[r]^{h_{K}} & \cY(K)
       
  1807 } \]
  1639 } \]
  1808 Given such an $h$ we can construct a morphism $g$, with $\bd g = 0$, as follows.
  1640 
  1809 Define $g(\olD\ot - ) = 0$ if the length/degree of $\olD$ is greater than 0.
  1641 The usual differential on graded linear maps between chain complexes induces a differential
  1810 If $\olD$ consists of the single subdivision $K = I_0\cup\cdots\cup I_q$ then define
  1642 on $\hom_\cC(\cX \to \cY)$, giving it the structure of a chain complex.
  1811 \[
  1643 
  1812 	g(\olD\ot x\ot \cbar) \deq h_K(\gl(x\ot\cbar)) .
  1644 Let $\cZ$ be another $\cC$ module.
  1813 \]
  1645 We define a chain map
  1814 Trivially, we have $(\bd g)(\olD\ot x \ot \cbar) = 0$ if $\deg(\olD) > 1$.
  1646 \[
  1815 If $\deg(\olD) = 1$, $(\bd g) = 0$ is equivalent to the fact that $h$ commutes with gluing.
  1647 	a: \hom_\cC(\cX \to \cY) \ot (\cX \ot_\cC \cZ) \to \cY \ot_\cC \cZ
  1816 If $\deg(\olD) = 0$, $(\bd g) = 0$ is equivalent to the fact 
  1648 \]
  1817 that each $h_K$ is a chain map.
  1649 as follows.
  1818 
  1650 Recall that the tensor product $\cX \ot_\cC \cZ$  depends on a choice of interval $J$, labeled
  1819 We can think of a general closed element $g\in \hom_\cC(\cX_\cC \to \cY_\cC)$
  1651 by $\cX$ on one boundary component and $\cZ$ on the other.
  1820 as a collection of chain maps which commute with the module action (gluing) up to coherent homotopy.
  1652 Because we are using the {\it local} homotopy colimit, any generator
  1821 \nn{ideally should give explicit examples of this in low degrees, 
  1653 $D\ot x\ot \bar{c}\ot z$ of $\cX \ot_\cC \cZ$ can be written (perhaps non-uniquely) as a gluing
  1822 but skip that for now.}
  1654 $(D'\ot x \ot \bar{c}') \bullet (D''\ot \bar{c}''\ot z)$, for some decomposition $J = L'\cup L''$
  1823 \nn{should also say something about composition of morphisms; well-defined up to homotopy, or maybe
  1655 and with $D'\ot x \ot \bar{c}'$ a generator of $\cl{\cX}(L')$ and 
  1824 should make some arbitrary choice}
  1656 $D''\ot \bar{c}''\ot z$ a generator of $\cl{\cZ}(L'')$.
  1825 \medskip
  1657 (Such a splitting exists because the blob diagram $D$ can be split into left and right halves, 
  1826 
  1658 since no blob can include both the leftmost and rightmost intervals in the underlying decomposition.
  1827 Given $_\cC\cZ$ and  $g: \cX_\cC \to \cY_\cC$ with $\bd g = 0$ as above, we next define a chain map
  1659 This step would fail if we were using the usual hocolimit instead of the local hocolimit.)
  1828 \[
  1660 We now define
  1829 	g\ot\id : \cX_\cC \ot {}_\cC\cZ \to \cY_\cC \ot {}_\cC\cZ .
  1661 \[
  1830 \]
  1662 	a: g\ot (D\ot x\ot \bar{c}\ot z) \mapsto g(D'\ot x \ot \bar{c}')\bullet (D''\ot \bar{c}''\ot z) .
  1831 \nn{...}
  1663 \]
  1832 More generally, we have a chain map
  1664 This does not depend on the choice of splitting $D = D'\bullet D''$ because $g$ commutes with gluing.
  1833 \[
       
  1834 	\hom_\cC(\cX_\cC \to \cY_\cC) \ot \cX_\cC \ot {}_\cC\cZ \to \cY_\cC \ot {}_\cC\cZ .
       
  1835 \]
       
  1836 
       
  1837 \nn{not sure whether to do low degree examples or try to state the general case; ideally both,
       
  1838 but maybe just low degrees for now.}
       
  1839 
       
  1840 
       
  1841 \nn{...}
       
  1842 
       
  1843 
       
  1844 \medskip
       
  1845 
       
  1846 
       
  1847 %\nn{should we define functors between $n$-cats in a similar way?  i.e.\ natural transformations
       
  1848 %of the $\cC$ functors which commute with gluing only up to higher morphisms?
       
  1849 %perhaps worth having both definitions available.
       
  1850 %certainly the simple kind (strictly commute with gluing) arise in nature.}
       
  1851 
  1665 
  1852 
  1666 
  1853 
  1667 
  1854 
  1668 
  1855 \subsection{The \texorpdfstring{$n{+}1$}{n+1}-category of sphere modules}
  1669 \subsection{The \texorpdfstring{$n{+}1$}{n+1}-category of sphere modules}