text/smallblobs.tex
changeset 294 6a43367bf06b
parent 293 fc1e49660173
child 296 8158eef1c97e
equal deleted inserted replaced
293:fc1e49660173 294:6a43367bf06b
     3 
     3 
     4 Fix $\cU$, an open cover of $M$. Define the `small blob complex' $\bc^{\cU}_*(M)$ to be the subcomplex of $\bc_*(M)$ of all blob diagrams in which every blob is contained in some open set of $\cU$. Say that an open cover $\cV$ is strictly subordinate to $\cU$ if the closure of every open set of $\cV$ is contained in some open set of $\cU$.
     4 Fix $\cU$, an open cover of $M$. Define the `small blob complex' $\bc^{\cU}_*(M)$ to be the subcomplex of $\bc_*(M)$ of all blob diagrams in which every blob is contained in some open set of $\cU$. Say that an open cover $\cV$ is strictly subordinate to $\cU$ if the closure of every open set of $\cV$ is contained in some open set of $\cU$.
     5 
     5 
     6 \begin{lem}
     6 \begin{lem}
     7 \label{lem:CH-small-blobs}
     7 \label{lem:CH-small-blobs}
     8 Fix an open cover $\cU$, and a sequence $\cV_k$ of open covers which are each strictly subordinate to $\cU$. For a given $k$, consider $\cG_k$ the subspace of $C_k(\Homeo(M)) \tensor \bc_*(M)$ spanned by $f \tensor b$, where $f:P^k \times M \to M$ is a $k$-parameter family of homeomorphisms such that for each $p \in P$, $f(p, -)$ makes $b$ small with respect to $\cV_k$. We can choose an up-to-homotopy representative $\ev$ of the chain map of Property \ref{property:evaluation} which gives the action of families of homeomorphisms, which restricts to give a map
     8 Fix an open cover $\cU$, and a sequence $\cV_k$ of open covers which are each strictly subordinate to $\cU$. \nn{Do, perhaps, the $\cV_k$ have to form a strictly subordinate sequence?} For a given $k$, consider $\cG_k$ the subspace of $C_k(\Homeo(M)) \tensor \bc_*(M)$ spanned by $f \tensor b$, where $f:P^k \times M \to M$ is a $k$-parameter family of homeomorphisms such that for each $p \in P$, $f(p, -)$ makes $b$ small with respect to $\cV_k$. We can choose an up-to-homotopy representative $\ev$ of the chain map of Property \ref{property:evaluation} which gives the action of families of homeomorphisms, which restricts to give a map
     9 $$\ev : \cG_k \subset C_k(\Homeo(M)) \tensor \bc_*(M) \to \bc^{\cU}_*(M)$$
     9 $$\ev : \cG_k \subset C_k(\Homeo(M)) \tensor \bc_*(M) \to \bc^{\cU}_*(M)$$
    10 for each $k$.
    10 for each $k$.
    11 \end{lem}
    11 \end{lem}
    12 \begin{rem}
    12 \begin{rem}
    13 We can't quite do the same with all $\cV_k$ just equal to $\cU$, but we can get by if we give ourselves arbitrarily little room to maneuver, by making the blobs we act on slightly smaller.
    13 We can't quite do the same with all $\cV_k$ just equal to $\cU$, but we can get by if we give ourselves arbitrarily little room to maneuver, by making the blobs we act on slightly smaller.
    56 
    56 
    57 Next, we choose a `shrinking system' for $\left(\cU,\{\cV_k\}_{k \geq 1}\right)$, namely for each increasing sequence of blob configurations
    57 Next, we choose a `shrinking system' for $\left(\cU,\{\cV_k\}_{k \geq 1}\right)$, namely for each increasing sequence of blob configurations
    58 $\beta_0 \prec \beta_1 \prec \cdots \prec \beta_m$, an $m+1$ parameter family of diffeomorphisms
    58 $\beta_0 \prec \beta_1 \prec \cdots \prec \beta_m$, an $m+1$ parameter family of diffeomorphisms
    59 $\phi_{\beta_0 \prec \cdots \prec \beta_m} : \Delta^{m+1} \to \Diff{M}$, such that
    59 $\phi_{\beta_0 \prec \cdots \prec \beta_m} : \Delta^{m+1} \to \Diff{M}$, such that
    60 \begin{itemize}
    60 \begin{itemize}
    61 \item for any $x$ with $x_0 = 0$, $\phi_{\beta_0 \prec \cdots \prec \beta_m}(x)(\beta_m)$ is subordinate to $\cV_{m+1}$, and
    61 \item for any $x$ with $x_0 = 0$, $\phi_{\beta_0 \prec \cdots \prec \beta_m}(x)(\beta_0)$ is subordinate to $\cV_{m+1}$, and
    62 \item for each $i = 1, \ldots, m$,
    62 \item for each $i = 1, \ldots, m$,
    63 \begin{align*}
    63 \begin{align*}
    64 \phi_{\beta_0 \prec \cdots \prec \beta_m}&(x_0, \ldots, x_{i-1},0,x_{i+1},\ldots,x_m) = \\ &\phi_{\beta_0 \prec \cdots \prec \beta_{i-1} \prec \beta_{i+1} \prec \cdots \prec \beta_m}(x_0,\ldots, x_{i-1},x_{i+1},\ldots,x_m).
    64 \phi_{\beta_0 \prec \cdots \prec \beta_m}&(x_0, \ldots, x_{i-1},0,x_{i+1},\ldots,x_m) = \\ &\phi_{\beta_0 \prec \cdots \prec \beta_{i-1} \prec \beta_{i+1} \prec \cdots \prec \beta_m}(x_0,\ldots, x_{i-1},x_{i+1},\ldots,x_m).
    65 \end{align*}
    65 \end{align*}
    66 \end{itemize}
    66 \end{itemize}
    67 Again, we've already made the choices for $\phi_{\beta}$ and for $\phi_{\eset \prec \beta}$, where $\beta$ is a single ball. It's not immediately obvious that it's possible to make such choices, but it follows readily from the following Lemma.
    67 Again, we've already made the choices for $\phi_{\beta}$ and for $\phi_{\eset \prec \beta}$, where $\beta$ is a single ball. It's not immediately obvious that it's possible to make such choices, but it follows readily from the following.
    68 
    68 
    69 \begin{lem}
    69 \begin{lem}
    70 \label{lem:extend-small-homeomorphisms}
    70 \label{lem:extend-small-homeomorphisms}
    71 Fix a collection of disjoint embedded balls $\beta$ in $M$ and some open cover $\cV$. Suppose we have a map $f :  X \to \Homeo(M)$ on some compact $X$ such that for each $x \in \bdy X$, $f(x)$ makes $\beta$ $\cV$-small. Then we can extend $f$ to a map $\tilde{f} : X \times [0,1] \to \Homeo(M)$ so that $\tilde{f}(x,0) = f(x)$ and for every $x \in \bdy X \times [0,1] \cup X \times \{1\}$, $\tilde{f}(x)$ makes $\beta$ $\cV$-small.
    71 Fix a collection of disjoint embedded balls $\beta$ in $M$ and some open cover $\cV$. Suppose we have a map $f :  X \to \Homeo(M)$ on some compact $X$ such that for each $x \in \bdy X$, $f(x)$ makes $\beta$ $\cV$-small. Then we can extend $f$ to a map $\tilde{f} : X \times [0,1] \to \Homeo(M)$ so that $\tilde{f}(x,0) = f(x)$ and for every $x \in \bdy X \times [0,1] \cup X \times \{1\}$, $\tilde{f}(x)$ makes $\beta$ $\cV$-small.
    72 \end{lem}
    72 \end{lem}
    75 There is some $K$ which uniformly bounds the expansion factors of all the homeomorphisms $f(x)$, that is $d(f(x)(a), f(x)(b)) < K d(a,b)$ for all $x \in X, a,b \in M$. Write $S=\epsilon^{-1} K \max_i \{\rad \beta_i\}$ (note that is $S<1$, we can just take $S=1$, as already $f(x)$ makes $\beta$ small for all $x$). Now define $\tilde{f}(t, x) = f(x) \compose g_{(S-1)t+1}$.
    75 There is some $K$ which uniformly bounds the expansion factors of all the homeomorphisms $f(x)$, that is $d(f(x)(a), f(x)(b)) < K d(a,b)$ for all $x \in X, a,b \in M$. Write $S=\epsilon^{-1} K \max_i \{\rad \beta_i\}$ (note that is $S<1$, we can just take $S=1$, as already $f(x)$ makes $\beta$ small for all $x$). Now define $\tilde{f}(t, x) = f(x) \compose g_{(S-1)t+1}$.
    76 
    76 
    77 If $x \in \bdy X$, then $g_{(S-1)t+1}(\beta_i) \subset \beta_i$, and by hypothesis $f(x)$ makes $\beta_i$ small, so $\tilde{f}(t, x)$ makes $\beta$ $\cV$-small for all $t \in [0,1]$. Alternatively, $\rad g_S(\beta_i) \leq \frac{1}{S} \rad \beta_i \leq \frac{\epsilon}{K}$, so $\rad \tilde{f}(1,x)(\beta_i) \leq \epsilon$, and so $\tilde{f}(1,x)$ makes $\beta$ $\cV$-small for all $x \in X$.
    77 If $x \in \bdy X$, then $g_{(S-1)t+1}(\beta_i) \subset \beta_i$, and by hypothesis $f(x)$ makes $\beta_i$ small, so $\tilde{f}(t, x)$ makes $\beta$ $\cV$-small for all $t \in [0,1]$. Alternatively, $\rad g_S(\beta_i) \leq \frac{1}{S} \rad \beta_i \leq \frac{\epsilon}{K}$, so $\rad \tilde{f}(1,x)(\beta_i) \leq \epsilon$, and so $\tilde{f}(1,x)$ makes $\beta$ $\cV$-small for all $x \in X$.
    78 \end{proof}
    78 \end{proof}
    79 
    79 
       
    80 In fact, the application of this Lemma would allow us to choose the families of diffeomorphisms $\phi_{\beta_0 \prec \cdots \prec \beta_m}$ so that for any $x$ with $x_0 = 0$, $\phi_{\beta_0 \prec \cdots \prec \beta_m}(x)(\beta_m)$ is subordinate to any fixed open cover, for example $\cV_1$ (that is, the covering by $\epsilon/2$ balls), not just $\cV_{m+1}$, which is a weaker condition. Regardless, because of the way we have chosen the $\ev$ map, we only ensure that $\ev(\restrict{\phi_{\beta_0 \prec \cdots \prec \beta_m}}{x_0 = 0} \tensor \beta_0) \in \bc_{\deg \beta_0 + m}^{\cU}(M)$, so the distinction is not important.
       
    81 
    80 We now describe the general case. For a $k$-blob diagram $b \in \bc_k(M)$, denote by $b_\cS$ for $\cS \subset \{0, \ldots, k-1\}$ the blob diagram obtained by erasing the corresponding blobs. In particular, $b_\eset = b$, $b_{\{0,\ldots,k-1\}} \in \bc_0(M)$, and $d b_\cS = \sum_{i \notin \cS} \pm  b_{\cS \cup \{i\}}$.
    82 We now describe the general case. For a $k$-blob diagram $b \in \bc_k(M)$, denote by $b_\cS$ for $\cS \subset \{0, \ldots, k-1\}$ the blob diagram obtained by erasing the corresponding blobs. In particular, $b_\eset = b$, $b_{\{0,\ldots,k-1\}} \in \bc_0(M)$, and $d b_\cS = \sum_{i \notin \cS} \pm  b_{\cS \cup \{i\}}$.
    81 Similarly, for a disjoint embedding of $k$ balls $\beta$ (that is, a blob diagram but without the labels on regions), $\beta_\cS$ denotes the result of erasing a subset of blobs. We'll write $\beta' \prec \beta$ if $\beta' = \beta_\cS$ for some $\cS$. Finally, for finite sequences, we'll write $i \prec i'$ if $i$ is subsequence of $i'$, and $i \prec_1 i$ if the lengths differ by exactly 1.
    83 Similarly, for a disjoint embedding of $k$ balls $\beta$ (that is, a blob diagram but without the labels on regions), $\beta_\cS$ denotes the result of erasing a subset of blobs. We'll write $\beta' \prec \beta$ if $\beta' = \beta_\cS$ for some $\cS$. Finally, for finite sequences, we'll write $i \prec i'$ if $i$ is subsequence of $i'$, and $i \prec_1 i$ if the lengths differ by exactly 1.
    82 
    84 
    83 
    85 
    84 \nn{revision marker ...}
    86 \nn{revision marker ...}
    85 
    87 
    86 \newcommand{\length}[1]{\operatorname{length}(#1)}
    88 \newcommand{\length}[1]{\operatorname{length}(#1)}
    87 
    89 
    88 We've finally reached the point where we can define a map $s: \bc_*(M) \to \bc^{\cU}_*(M)$, and then a homotopy $h:\bc_*(M) \to \bc_{*+1}(M)$ so that $dh+hd=i\circ s$.  We have
    90 We've finally reached the point where we can define a map $s: \bc_*(M) \to \bc^{\cU}_*(M)$, and then a homotopy $h:\bc_*(M) \to \bc_{*+1}(M)$ so that $dh+hd=i\circ s$.  We have
    89 $$s(b) = \sum_{i} ev(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor b_i)$$
    91 $$s(b) = \sum_{i} ev(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor b_i)$$
    90 where the sum is over sequences $i=(i_1,\ldots,i_m)$ in $\{1,\ldots,k\}$, with $0\leq m < k$, $i(b)$ denotes the increasing sequence of blob configurations
    92 where the sum is over sequences $i=(i_1,\ldots,i_m)$ in $\{1,\ldots,k\}$, with $0\leq m \leq k$, $i(b)$ denotes the increasing sequence of blob configurations
    91 $$\beta_{(i_1,\ldots,i_m)} \prec \beta_{(i_2,\ldots,i_m)} \prec \cdots \prec \beta_{()},$$
    93 $$\beta_{(i_1,\ldots,i_m)} \prec \beta_{(i_2,\ldots,i_m)} \prec \cdots \prec \beta_{()},$$
    92 and, as usual, $b_i$ denotes $b$ with blobs $i_1, \ldots i_m$ erased. We'll also write
    94 and, as usual, $b_i$ denotes $b$ with blobs $i_1, \ldots, i_m$ erased. We'll also write
    93 $$s(b) = \sum_{m=0}^{k-1} \sum_{\length{i}=m} ev(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor b_i),$$
    95 $$s(b) = \sum_{m=0}^{k} \sum_{\length{i}=m} ev(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor b_i),$$
    94 where we arrange the sum according to the length of $i$.
    96 where we arrange the sum according to the length of $i$.
    95 The homotopy $h:\bc_*(M) \to \bc_{*+1}(M)$ is similarly given by
    97 The homotopy $h:\bc_*(M) \to \bc_{*+1}(M)$ is similarly given by
    96 $$h(b) = \sum_{i} ev(\phi_{i(b)}, b_i).$$
    98 $$h(b) = \sum_{i} ev(\phi_{i(b)}, b_i).$$
    97 
    99 
       
   100 Before completing the proof, we unpack this definition for $b \in \bc_2(M)$, a $2$-blob. We'll write $\beta$ for the underlying balls (either nested or disjoint).
       
   101 Now $s$ is the sum of $5$ terms, split into three groups depending on with the length of the sequence $i$ is $0, 1$ or $2$. Thus
       
   102 \begin{align*}
       
   103 s(b) & = \restrict{\phi_{\beta}}{x_0 = 0}(b) + \\
       
   104 	& \quad + \restrict{\phi_{\beta_1 \prec \beta}}{x_0 = 0}(b_1) + \restrict{\phi_{\beta_2 \prec \beta}}{x_0 = 0}(b_2) + \\
       
   105 	& \quad + \restrict{\phi_{\eset \prec \beta_1 \prec \beta}}{x_0 = 0}(b_{12}) + \restrict{\phi_{\eset \prec \beta_2 \prec \beta}}{x_0 = 0}(b_{12}).
       
   106 \end{align*}
    98 
   107 
    99 Before completing the proof, we unpack this definition for $b \in \bc_2(M)$, a $2$-blob.
   108 As in the $k=1$ case, the first term, corresponding to $i(b) = \eset$, makes the all balls in $\beta$ $\cV_1$-small. However, if this were the only term $s$ would not be a chain map, because we have no control over $\restrict{\phi_{\beta}}{x_0 = 0}(\bdy b)$. This necessitates the other terms, which fix the boundary at successively higher codimensions.
   100 Now $s$ is the sum of $5$ terms. As in the $k=1$ case, there is a term that makes the underlying balls $\beta$ small, while the other terms `get the boundary right'. It may be useful to look at Figure \ref{fig:erectly-a-tent-badly} to help understand the arrangement.
   109 
       
   110 It may be useful to look at Figure \ref{fig:erectly-a-tent-badly} to help understand the arrangement. The red, blue and orange $2$-cells there correspond to the $m=0$, $m=1$ and $m=2$ terms respectively, while the $3$-cells (only one of each type is shown) correspond to the terms in the homotopy $h$.
   101 \begin{figure}[!ht]
   111 \begin{figure}[!ht]
   102 $$\mathfig{0.5}{smallblobs/tent}$$
   112 $$\mathfig{0.5}{smallblobs/tent}$$
   103 \caption{``Erecting a tent badly.'' We know where we want to send a simplex, and each of the iterated boundary components. However, these do not agree, and we need to stitch the pieces together. Note that these diagrams don't exactly match the situation in the text: a $k$-simplex has $k+1$ boundary components, while a $k$-blob has $k$ boundary terms.}
   113 \caption{``Erecting a tent badly.'' We know where we want to send a simplex, and each of the iterated boundary components. However, these do not agree, and we need to stitch the pieces together. Note that these diagrams don't exactly match the situation in the text: a $k$-simplex has $k+1$ boundary components, while a $k$-blob has $k$ boundary terms.}
   104 \label{fig:erectly-a-tent-badly}
   114 \label{fig:erectly-a-tent-badly}
   105 \end{figure}
   115 \end{figure}
   106 \todo{write out the terms, talk about them.}
       
   107 
   116 
       
   117 \nn{lots of signs are wrong ...}
       
   118 \begin{align*}
       
   119 \bdy s(b) & =  \restrict{\phi_{\beta}}{x_0 = 0}(\bdy b) + \\
       
   120 	& \quad + \restrict{\phi_{\beta}}{x_0 = 0}(b_1) - \restrict{\phi_{\beta_1}}{x_0 = 0}(b_1) + \restrict{\phi_{\beta}}{x_0 = 0}(b_2) - \restrict{\phi_{\beta_2}}{x_0 = 0}(b_2) + \\
       
   121 	& \quad - \restrict{\phi_{\beta_1 \prec \beta}}{x_0 = 0}(b_{12}) - \restrict{\phi_{\beta_2 \prec \beta}}{x_0 = 0}(b_{12}) + \\
       
   122 	& \quad + \restrict{\phi_{\beta_1 \prec \beta}}{x_0 = 0}(b_{12}) - \restrict{\phi_{\eset  \prec \beta}}{x_0 = 0}(b_{12}) + \restrict{\phi_{\eset \prec \beta_1}}{x_0 = 0}(b_{12}) + \\
       
   123 	& \quad + \restrict{\phi_{\beta_2 \prec \beta}}{x_0 = 0}(b_{12}) - \restrict{\phi_{\eset \prec \beta}}{x_0 = 0}(b_{12}) + \restrict{\phi_{\eset \prec \beta_2}}{x_0 = 0}(b_{12}), \\ 
       
   124 \intertext{while}
       
   125 s(\bdy(b)) & = s(b_1) - s(b_2) \\
       
   126 		& = \restrict{\phi_{\beta_1}}{x_0=0}(b_1) + \restrict{\phi_{\eset \prec \beta_1}}{x_0=0}(b_{12}) - \restrict{\phi_{\beta_2}}{x_0=0}(b_2) - \restrict{\phi_{\eset \prec \beta_2}}{x_0=0}(b_{12}) .
       
   127 \end{align*}
       
   128 \nn{that does indeed work, modulo signs}
   108 
   129 
   109 We need to check that $s$ is a chain map, and that the image of $s$ in fact lies in $\bc^{\cU}_*(M)$. \todo{} Calculate
   130 We need to check that $s$ is a chain map, and that \todo{} the image of $s$ in fact lies in $\bc^{\cU}_*(M)$.  Calculate
   110 \begin{align*}
   131 \begin{align*}
   111 \bdy(s(b)) & = \sum_{m=0}^{k-1} \sum_{\length{i}=m} \ev\left(\bdy(\restrict{\phi_{i(b)}}{x_0 = 0})\tensor b_i\right) + (-1)^m \ev\left(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor \bdy b_i\right) \\
   132 \bdy(s(b)) & = \sum_{m=0}^{k-1} \sum_{\length{i}=m} \ev\left(\bdy(\restrict{\phi_{i(b)}}{x_0 = 0})\tensor b_i\right) + (-1)^m \ev\left(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor \bdy b_i\right) \\
   112                 & = \sum_{m=0}^{k-1} \sum_{\length{i}=m} \ev\left(\sum_{i' \prec_1 i} \pm \restrict{\phi_{i'(b)}}{x_0 = 0})\tensor b_i\right) + (-1)^m \ev\left(\restrict{\phi_{i(b)}}{x_0 = 0}\tensor \sum_{i \prec_1 i'} \pm b_{i'}\right) \\
   133                 & = \sum_{m=0}^{k-1} \sum_{\length{i}=m} \ev\left(\sum_{i' \prec_1 i} \pm \restrict{\phi_{i'(b)}}{x_0 = 0})\tensor b_i\right) + (-1)^m \ev\left(\restrict{\phi_{i(b)}}{x_0 = 0}\tensor \sum_{i \prec_1 i'} \pm b_{i'}\right) \\
   113 \intertext{and telescoping the sum}
   134 \intertext{and telescoping the sum}
   114 		& = \sum_{m=0}^{k-2} \left(\sum_{\length{i}=m}  (-1)^m \ev\left(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor \sum_{i \prec_1 i'} \pm b_{i'}\right) \right) + \left(\sum_{\length{i}=m+1} \ev\left(\sum_{i' \prec_1 i} \pm \restrict{\phi_{i'(b)}}{x_0 = 0} \tensor b_i\right) \right) + \\
   135 		& = \sum_{m=0}^{k-2} \left(\sum_{\length{i}=m}  (-1)^m \ev\left(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor \sum_{i \prec_1 i'} \pm b_{i'}\right) \right) + \left(\sum_{\length{i}=m+1} \ev\left(\sum_{i' \prec_1 i} \pm \restrict{\phi_{i'(b)}}{x_0 = 0} \tensor b_i\right) \right) + \\