pnas/pnas.tex
changeset 590 6de8871d5786
parent 584 7fc1a7ff9667
parent 589 14b7d867e423
child 591 294c6b2ab723
equal deleted inserted replaced
584:7fc1a7ff9667 590:6de8871d5786
   497 natural with respect to homeomorphisms, and associative with respect to iterated gluings.
   497 natural with respect to homeomorphisms, and associative with respect to iterated gluings.
   498 \end{property}
   498 \end{property}
   499 
   499 
   500 \begin{property}[Contractibility]
   500 \begin{property}[Contractibility]
   501 \label{property:contractibility}%
   501 \label{property:contractibility}%
   502 With field coefficients, the blob complex on an $n$-ball is contractible in the sense 
   502 The blob complex on an $n$-ball is contractible in the sense 
   503 that it is homotopic to its $0$-th homology.
   503 that it is homotopic to its $0$-th homology, and this is just the vector space associated to the ball by the $n$-category.
   504 Moreover, the $0$-th homology of balls can be canonically identified with the vector spaces 
   504 \begin{equation*}
   505 associated by the system of fields $\cF$ to balls.
   505 \xymatrix{\bc_*(B^n;\cC) \ar[r]^(0.4){\iso}_(0.4){\text{qi}} & H_0(\bc_*(B^n;\cC)) \ar[r]^(0.6)\iso & \cC(B^n)}
   506 \begin{equation*}
       
   507 \xymatrix{\bc_*(B^n;\cF) \ar[r]^(0.4){\iso}_(0.4){\text{qi}} & H_0(\bc_*(B^n;\cF)) \ar[r]^(0.6)\iso & A_\cF(B^n)}
       
   508 \end{equation*}
   506 \end{equation*}
   509 \end{property}
   507 \end{property}
       
   508 \nn{maybe should say something about the $A_\infty$ case}
   510 
   509 
   511 \begin{proof}(Sketch)
   510 \begin{proof}(Sketch)
   512 For $k\ge 1$, the contracting homotopy sends a $k$-blob diagram to the $(k{+}1)$-blob diagram
   511 For $k\ge 1$, the contracting homotopy sends a $k$-blob diagram to the $(k{+}1)$-blob diagram
   513 obtained by adding an outer $(k{+}1)$-st blob consisting of all $B^n$.
   512 obtained by adding an outer $(k{+}1)$-st blob consisting of all $B^n$.
   514 For $k=0$ we choose a splitting $s: H_0(\bc_*(B^n)) \to \bc_0(B^n)$ and send 
   513 For $k=0$ we choose a splitting $s: H_0(\bc_*(B^n)) \to \bc_0(B^n)$ and send 
   515 $x\in \bc_0(B^n)$ to $x - s([x])$, where $[x]$ denotes the image of $x$ in $H_0(\bc_*(B^n))$.
   514 $x\in \bc_0(B^n)$ to $x - s([x])$, where $[x]$ denotes the image of $x$ in $H_0(\bc_*(B^n))$.
   516 \end{proof}
   515 \end{proof}
   517 
   516 
   518 
       
   519 \subsection{Specializations}
   517 \subsection{Specializations}
   520 \label{sec:specializations}
   518 \label{sec:specializations}
   521 
   519 
   522 The blob complex has two important special cases.
   520 The blob complex has two important special cases.
   523 
   521 
   524 \begin{thm}[Skein modules]
   522 \begin{thm}[Skein modules]
   525 \label{thm:skein-modules}
   523 \label{thm:skein-modules}
       
   524 \nn{Plain n-categories only?}
   526 The $0$-th blob homology of $X$ is the usual 
   525 The $0$-th blob homology of $X$ is the usual 
   527 (dual) TQFT Hilbert space (a.k.a.\ skein module) associated to $X$
   526 (dual) TQFT Hilbert space (a.k.a.\ skein module) associated to $X$
   528 by $\cF$.
   527 by $\cC$.
   529 \begin{equation*}
   528 \begin{equation*}
   530 H_0(\bc_*(X;\cF)) \iso A_{\cF}(X)
   529 H_0(\bc_*(X;\cC)) \iso A_{\cC}(X)
   531 \end{equation*}
   530 \end{equation*}
   532 \end{thm}
   531 \end{thm}
       
   532 This follows from the fact that the $0$-th homology of a homotopy colimit of \todo{something plain} is the usual colimit, or directly from the explicit description of the blob complex.
   533 
   533 
   534 \begin{thm}[Hochschild homology when $X=S^1$]
   534 \begin{thm}[Hochschild homology when $X=S^1$]
   535 \label{thm:hochschild}
   535 \label{thm:hochschild}
   536 The blob complex for a $1$-category $\cC$ on the circle is
   536 The blob complex for a $1$-category $\cC$ on the circle is
   537 quasi-isomorphic to the Hochschild complex.
   537 quasi-isomorphic to the Hochschild complex.