text/smallblobs.tex
changeset 314 6e23226d1cca
parent 312 5bb1cbe49c40
equal deleted inserted replaced
313:ef8fac44a8aa 314:6e23226d1cca
    96 
    96 
    97 \newcommand{\length}[1]{\operatorname{length}(#1)}
    97 \newcommand{\length}[1]{\operatorname{length}(#1)}
    98 
    98 
    99 We've finally reached the point where we can define a map $s: \bc_*(M) \to \bc^{\cU}_*(M)$, and then a homotopy $h:\bc_*(M) \to \bc_{*+1}(M)$ so that $dh+hd=i\circ s$.  We have
    99 We've finally reached the point where we can define a map $s: \bc_*(M) \to \bc^{\cU}_*(M)$, and then a homotopy $h:\bc_*(M) \to \bc_{*+1}(M)$ so that $dh+hd=i\circ s$.  We have
   100 $$s(b) = \sum_{m=0}^{k} \sum_{i \in \{1, \ldots, k\}^{m} \setminus \Delta} (-1)^{\sigma(i)}  \ev(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor b_i),$$
   100 $$s(b) = \sum_{m=0}^{k} \sum_{i \in \{1, \ldots, k\}^{m} \setminus \Delta} (-1)^{\sigma(i)}  \ev(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor b_i),$$
   101 where the sum is over sequences without repeats $i=(i_1,\ldots,i_m)$ in $\{1,\ldots,k\}$, with $0\leq m \leq k$ (we're using $\Delta$ here to indicate the generalized diagonal, where any two entries coincide), $\sigma(i)$ is something to do with $i$, $i(b)$ denotes the increasing sequence of blob configurations
   101 where the sum is over sequences without repeats $i=(i_1,\ldots,i_m)$ in $\{1,\ldots,k\}$, with $0\leq m \leq k$ (we're using $\Delta$ here to indicate the generalized diagonal, where any two entries coincide), $\sigma(i)$ is defined blow, $i(b)$ denotes the increasing sequence of blob configurations
   102 $$\beta_{(i_1,\ldots,i_m)} \prec \beta_{(i_2,\ldots,i_m)} \prec \cdots \prec \beta_{()},$$
   102 $$\beta_{(i_1,\ldots,i_m)} \prec \beta_{(i_2,\ldots,i_m)} \prec \cdots \prec \beta_{()},$$
   103 and, as usual, $b_i$ denotes $b$ with blobs $i_1, \ldots, i_m$ erased.
   103 and, as usual, $b_i$ denotes $b$ with blobs $i_1, \ldots, i_m$ erased.
   104 The homotopy $h:\bc_*(M) \to \bc_{*+1}(M)$ is similarly given by
   104 The homotopy $h:\bc_*(M) \to \bc_{*+1}(M)$ is similarly given by
   105 $$h(b) = \sum_{m=0}^{k} \sum_{i} (-1)^{\sigma(i)} \ev(\phi_{i(b)}, b_i).$$
   105 $$h(b) = \sum_{m=0}^{k} \sum_{i} (-1)^{\sigma(i)} \ev(\phi_{i(b)}, b_i).$$
       
   106 
       
   107 Given a sequence $a \in \{1, \ldots, k\}^{m-1} \setminus \Delta$ and $1 \leq b \leq k$ with $b \not \in a$, denote by $a \!\downarrow_b\in \{1, \ldots, k-1\}^{m-1} \setminus \Delta$ the sequence obtained by reducing by 1 each entry of $a$ which is greater than $b$. Then $\sigma(i) = 0$ or $1$ is defined recursively by $\sigma() = 0$, and 
       
   108 $$\sigma(ab) = \sigma(a \!\downarrow_b) + m + b + 1 \mod{2}.$$
   106 
   109 
   107 Before completing the proof, we unpack this definition for $b \in \bc_2(M)$, a $2$-blob. We'll write $\beta$ for the underlying balls (either nested or disjoint).
   110 Before completing the proof, we unpack this definition for $b \in \bc_2(M)$, a $2$-blob. We'll write $\beta$ for the underlying balls (either nested or disjoint).
   108 Now $s$ is the sum of $5$ terms, split into three groups depending on with the length of the sequence $i$ is $0, 1$ or $2$. Thus
   111 Now $s$ is the sum of $5$ terms, split into three groups depending on with the length of the sequence $i$ is $0, 1$ or $2$. Thus
   109 \begin{align*}
   112 \begin{align*}
   110 s(b) & = (-1)^{\sigma()} \restrict{\phi_{\beta}}{x_0 = 0}(b) + \\
   113 s(b) & = (-1)^{\sigma()} \restrict{\phi_{\beta}}{x_0 = 0}(b) + \\
   132 		& = \restrict{\phi_{\beta_1}}{x_0=0}(b_1) - \restrict{\phi_{\eset \prec \beta_1}}{x_0=0}(b_{12}) - \restrict{\phi_{\beta_2}}{x_0=0}(b_2) + \restrict{\phi_{\eset \prec \beta_2}}{x_0=0}(b_{12}) .
   135 		& = \restrict{\phi_{\beta_1}}{x_0=0}(b_1) - \restrict{\phi_{\eset \prec \beta_1}}{x_0=0}(b_{12}) - \restrict{\phi_{\beta_2}}{x_0=0}(b_2) + \restrict{\phi_{\eset \prec \beta_2}}{x_0=0}(b_{12}) .
   133 \end{align*}
   136 \end{align*}
   134 \nn{that does indeed work, with $\sigma() = 1,\sigma(1)=-1, \sigma(2)=1, \sigma(21)=-1, \sigma(12)=1$}
   137 \nn{that does indeed work, with $\sigma() = 1,\sigma(1)=-1, \sigma(2)=1, \sigma(21)=-1, \sigma(12)=1$}
   135 
   138 
   136 We need to check that $s$ is a chain map, and that \todo{} the image of $s$ in fact lies in $\bc^{\cU}_*(M)$.
   139 We need to check that $s$ is a chain map, and that \todo{} the image of $s$ in fact lies in $\bc^{\cU}_*(M)$.
   137 We first do some preliminary calculations, and introduce yet more notation. For $i \in \{1, \ldots, k\}^{m} \setminus \Delta$ and $1 \leq p \leq m$, we'll denote by $i \setminus i_p$ the sequence in $\{1, \ldots, k-1\}^{m-1} \setminus \Delta$ obtained by deleting the $p$-th entry of $i$, and reducing all entries which are greater than $i_p$ by one. Conversely, for $i \in \{1, \ldots, k-1\}^{m-1} \setminus \Delta$, $1 \leq p \leq m$ and $1 \leq q \leq k$, we'll denote by $i \ll_p q$ the sequence in $\{1, \ldots, k\}^{m} \setminus \Delta$ obtained by increasing any entries of $i$ which are at least $q$ by one, and inserting $q$ as the $p$-th entry, shifting later entries to the right. Note the natural bijection between the sets
   140 %We first do some preliminary calculations, and introduce yet more notation. For $i \in \{1, \ldots, k\}^{m} \setminus \Delta$ and $1 \leq p \leq m$, we'll denote by $i \setminus i_p$ the sequence in $\{1, \ldots, k-1\}^{m-1} \setminus \Delta$ obtained by deleting the $p$-th entry of $i$, and reducing all entries which are greater than $i_p$ by one. Conversely, for $i \in \{1, \ldots, k-1\}^{m-1} \setminus \Delta$, $1 \leq p \leq m$ and $1 \leq q \leq k$, we'll denote by $i \ll_p q$ the sequence in $\{1, \ldots, k\}^{m} \setminus \Delta$ obtained by increasing any entries of $i$ which are at least $q$ by one, and inserting $q$ as the $p$-th entry, shifting later entries to the right. Note the natural bijection between the sets
   138 \begin{align}
   141 %\begin{align}
   139 \setc{(i,p)}{i \in \{1, \ldots, k\}^{m} \setminus \Delta, 1 \leq p \leq m} & \iso \setc{(i,p,q)}{i \in \{1, \ldots, k-1\}^{m-1} \setminus \Delta, 1 \leq p \leq m, 1 \leq q \leq k} \notag \\ 
   142 %\setc{(i,p)}{i \in \{1, \ldots, k\}^{m} \setminus \Delta, 1 \leq p \leq m} & \iso \setc{(i,p,q)}{i \in \{1, \ldots, k-1\}^{m-1} \setminus \Delta, 1 \leq p \leq m, 1 \leq q \leq k} \notag \\ 
   140 \intertext{given by}
   143 %\intertext{given by}
   141 (i, p) & \mapsto (i \setminus i_p, p, i_p) \label{eq:reindexing-bijection} \\
   144 %(i, p) & \mapsto (i \setminus i_p, p, i_p) \label{eq:reindexing-bijection} \\
   142 (i \ll_p q, p) & \mapsfrom (i,p,q) \notag
   145 %(i \ll_p q, p) & \mapsfrom (i,p,q) \notag
   143 \end{align}
   146 %\end{align}
   144 which we will use in a moment to re-index a summation.
   147 %which we will use in a moment to re-index a summation.
   145 
       
   146 We then calculate
       
   147 \begin{align*}
   148 \begin{align*}
   148 \bdy(s(b)) & = \sum_{m=0}^{k} \sum_{i \in \{1, \ldots, k\}^{m} \setminus \Delta} (-1)^{\sigma(i)} \ev\left(\bdy(\restrict{\phi_{i(b)}}{x_0 = 0})\tensor b_i\right) + (-1)^{\sigma(i) + m} \ev\left(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor \bdy b_i\right) \\
   149 \bdy(s(b)) & = \sum_{m=0}^{k} \sum_{i \in \{1, \ldots, k\}^{m} \setminus \Delta} (-1)^{\sigma(i)} \ev\left(\bdy(\restrict{\phi_{i(b)}}{x_0 = 0})\tensor b_i\right) + (-1)^{\sigma(i) + m} \ev\left(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor \bdy b_i\right) \\
   149 \intertext{and begin by expanding out $\bdy(\restrict{\phi_{i(b)}}{x_0 = 0})$,}
   150 \intertext{and begin by expanding out $\bdy(\restrict{\phi_{i(b)}}{x_0 = 0})$,}
   150 	& = \sum_{m=0}^{k} \sum_{i \in \{1, \ldots, k\}^{m} \setminus \Delta} \Bigg(\sum_{p=1}^{m+1} (-1)^{\sigma(i)+p+1} \ev\left(\restrict{\phi_{i(b)}}{x_0 = x_p = 0}\tensor b_i\right) \Bigg) + \\
   151 	& = \sum_{m=0}^{k} \sum_{i \in \{1, \ldots, k\}^{m} \setminus \Delta} \Bigg(\sum_{p=1}^{m+1} (-1)^{\sigma(i)+p+1} \ev\left(\restrict{\phi_{i(b)}}{x_0 = x_p = 0}\tensor b_i\right) \Bigg) + \\
   151 	& \qquad + (-1)^{\sigma(i) + m} \ev\left(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor \bdy b_i\right)
   152 	& \qquad + (-1)^{\sigma(i) + m} \ev\left(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor \bdy b_i\right)
   152 \end{align*}
   153 \end{align*}
   153 Now, write $s_{p_1,p}(i)$ to indicate the sequence obtained from $i$ by transposing its $p-1$-th and $p$-th entries and note that for $2 \leq p \leq m$,
   154 Now, write $s_{p-1,p}(i)$ to indicate the sequence obtained from $i$ by transposing its $p-1$-th and $p$-th entries and note that for $2 \leq p \leq m$,
   154 \begin{align*}
   155 \begin{align*}
   155 \restrict{\phi_{i(b)}}{x_0=x_p=0} & = \restrict{\phi_{\beta_{i_1\cdots i_m} \prec \beta_{i_2 \cdots i_m} \prec \cdots \prec \beta}}{x_0=x_p=0} \\
   156 \restrict{\phi_{i(b)}}{x_0=x_p=0} & = \restrict{\phi_{\beta_{i_1\cdots i_m} \prec \beta_{i_2 \cdots i_m} \prec \cdots \prec \beta}}{x_0=x_p=0} \\
   156 	& = \restrict{\phi_{\beta_{i_1\cdots i_m} \prec \beta_{i_2 \cdots i_m} \prec \cdots \prec \beta_{i_{p-1} i_p \cdots i_m} \prec \beta_{i_{p+1} \cdots i_m} \prec \cdots \prec \beta}}{x_0=0} \\
   157 	& = \restrict{\phi_{\beta_{i_1\cdots i_m} \prec \beta_{i_2 \cdots i_m} \prec \cdots \prec \beta_{i_{p-1} i_p \cdots i_m} \prec \beta_{i_{p+1} \cdots i_m} \prec \cdots \prec \beta}}{x_0=0} \\
   157 	& = \restrict{\phi_{s_{p-1,p}(i)(b)}}{x_0=x_p=0}.
   158 	& = \restrict{\phi_{s_{p-1,p}(i)(b)}}{x_0=x_p=0}.
   158 \end{align*}
   159 \end{align*}
   159 Since $\sigma(i) = - \sigma(s_{p_1,p}(i))$, we can cancel out in pairs all the terms above except those with $p=1$ or $p=m+1$. Thus
   160 Since $\sigma(i) = - \sigma(s_{p-1,p}(i))$, we can cancel out in pairs all the terms above except those with $p=1$ or $p=m+1$. Thus
   160 \begin{align*}
   161 \begin{align*}
   161 \bdy(s(b)) & = \sum_{m=0}^{k} \sum_{i \in \{1, \ldots, k\}^{m} \setminus \Delta} \Bigg((-1)^{\sigma(i)} \ev\left(\restrict{\phi_{\rest(i)(b)}}{x_0 = 0}\tensor b_i\right) + (-1)^{\sigma(i) + m} \ev\left(\restrict{\phi_{\most(i)(b_{i_m})}}{x_0 = 0}\tensor b_i\right)\Bigg) + \\
   162 \bdy(s(b)) & = \sum_{m=0}^{k} \sum_{i \in \{1, \ldots, k\}^{m} \setminus \Delta} \Bigg((-1)^{\sigma(i)} \ev\left(\restrict{\phi_{\rest(i)(b)}}{x_0 = 0}\tensor b_i\right) + (-1)^{\sigma(i) + m} \ev\left(\restrict{\phi_{\most(i)(b_{i_m})}}{x_0 = 0}\tensor b_i\right)\Bigg) + \\
   162 	& \qquad + (-1)^{\sigma(i) + m} \ev\left(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor \bdy b_i\right)
   163 	& \qquad + (-1)^{\sigma(i) + m} \ev\left(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor \bdy b_i\right)
   163 \end{align*}
   164 \end{align*}
   164 where we write $\rest(i)$ for the `tail' of $i$ and $\most(i)$ for the `head' of $i$, so $\rest(i_1 i_2 \cdots i_m) = (i_2 \cdots i_m)$ and $\most(i_1 \cdots i_{m-1} i_m) = (i_1 \cdots i_{m-1})$. Next, we note that $b_i = (b_{i_1})_{\rest(i)} = (b_{i_m})_{\most(i)}$, and then rewrite the sum of $i$ as a double sum over $i_1$ and $\rest(i)$, with $i = \rest(i) \ll_1 i_1$, for the first term, and as a double sum over $\most(i)$ and $i_m$, with $i = \most(i) \ll_{m} i_m$, for the second term.
   165 where we write $\rest(i)$ for the `tail' of $i$ and $\most(i)$ for the `head' of $i$, so $\rest(i_1 i_2 \cdots i_m) = (i_2 \cdots i_m)$ and $\most(i_1 \cdots i_{m-1} i_m) = (i_1 \cdots i_{m-1})$. Next, we note that $b_i = (b_{i_1})_{\rest(i)} = (b_{i_m})_{\most(i)}$, and then rewrite the sum of $i$ as a double sum over $i_1$ and $\rest(i)$, with $i = i_1\rest(i)$, for the first term, and as a double sum over $\most(i)$ and $i_m$, with $i = \most(i)i_m$, for the second term.
   165 \begin{align*}
   166 \begin{align*}
   166 \bdy(s(b)) & = \sum_{m=0}^{k} \Bigg( \sum_{\rest(i) \in \{1, \ldots, k\}^{m-1} \setminus \Delta} \sum_{\substack{i_1 = 1 \\ i_1 \not\in \rest(i)}}^{k}  (-1)^{\sigma(i_1\rest(i))} \ev\left(\restrict{\phi_{\rest(i)(b)}}{x_0 = 0}\tensor b_{i_1\rest(i)}\right) \Bigg)+ \\
   167 \bdy(s(b)) & = \sum_{m=0}^{k} \Bigg( \sum_{\rest(i) \in \{1, \ldots, k\}^{m-1} \setminus \Delta} \sum_{\substack{i_1 = 1 \\ i_1 \not\in \rest(i)}}^{k}  (-1)^{\sigma(i_1\rest(i))} \ev\left(\restrict{\phi_{\rest(i)(b)}}{x_0 = 0}\tensor b_{i_1\rest(i)}\right) \Bigg)+ \\
   167 	& \qquad \Bigg( \sum_{\most(i) \in \{1, \ldots, k\}^{m-1} \setminus \Delta} \sum_{\substack{i_m = 1 \\ i_1 \not\in \most(i)}}^{k}  (-1)^{\sigma(\most(i) i_m) + m} \ev\left(\restrict{\phi_{\most(i)(b_{i_m})}}{x_0 = 0}\tensor b_{\most(i) i_m}\right)\Bigg) + \\
   168 	& \qquad \Bigg( \sum_{\most(i) \in \{1, \ldots, k\}^{m-1} \setminus \Delta} \sum_{\substack{i_m = 1 \\ i_1 \not\in \most(i)}}^{k}  (-1)^{\sigma(\most(i) i_m) + m} \ev\left(\restrict{\phi_{\most(i)(b_{i_m})}}{x_0 = 0}\tensor b_{\most(i) i_m}\right)\Bigg) + \\
   168 	& \qquad \Bigg( \sum_{i \in \{1, \ldots, k\}^{m} \setminus \Delta} (-1)^{\sigma(i) + m} \ev\left(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor \bdy b_i\right)\Bigg)
   169 	& \qquad \Bigg( \sum_{i \in \{1, \ldots, k\}^{m} \setminus \Delta} (-1)^{\sigma(i) + m} \ev\left(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor \bdy b_i\right)\Bigg)
   169 \end{align*}
   170 \end{align*}
       
   171 We will show that the first and third rows cancel, and that the second row gives with $s(\bdy b)$.
       
   172 
   170 Now $$\sum_{\substack{i_1 = 1 \\ i_1 \not\in \rest(i)}}^{k} (-1)^{\sigma(i_1\rest(i))} b_{i_1\rest(i)} = (-1)^{\sigma(\rest(i))} \bdy (b_{\rest(i)})$$
   173 Now $$\sum_{\substack{i_1 = 1 \\ i_1 \not\in \rest(i)}}^{k} (-1)^{\sigma(i_1\rest(i))} b_{i_1\rest(i)} = (-1)^{\sigma(\rest(i))} \bdy (b_{\rest(i)})$$
   171 
   174 
   172 
   175 
   173 On the other hand, we have
   176 On the other hand, we have
   174 \begin{align*}
   177 \begin{align*}
   175 s(\bdy b) & = \sum_{q=1}^k (-1)^{q+1} s(b_q) \\
   178 s(\bdy b) & = \sum_{q=1}^k (-1)^{q+1} s(b_q) \\
   176 	       & = \sum_{q=1}^k (-1)^{q+1} \sum_{m=0}^{k-1} \sum_{i \in \{1, \ldots, k-1\}^{m} \setminus \Delta} (-1)^{\sigma(i)}  \ev(\restrict{\phi_{i(b_q)}}{x_0 = 0} \tensor (b_q)_i).
   179 	       & = \sum_{q=1}^k (-1)^{q+1} \sum_{m=0}^{k-1} \sum_{i \in \{1, \ldots, k-1\}^{m} \setminus \Delta} (-1)^{\sigma(i)}  \ev(\restrict{\phi_{i(b_q)}}{x_0 = 0} \tensor (b_q)_i).
   177 \end{align*}
   180 \end{align*}
   178 \todo{to be continued...}
   181 \todo{to be continued...}
   179 
   182 
   180 Finally, we need to check that $dh+hd=i\circ s$. \todo{}
   183 Finally, the calculation that $\bdy h+h \bdy=i\circ s - \id$ is very similar, and we omit it.
   181 \end{proof}
   184 \end{proof}