text/definitions.tex
changeset 166 75f5c197a0d4
parent 160 f38801a419f7
child 177 9b1b378d9ba3
equal deleted inserted replaced
165:5234b7329042 166:75f5c197a0d4
    24 %Fix a top dimension $n$, and a symmetric monoidal category $\cS$ whose objects are sets. While reading the definition, you should just think about the case $\cS = \Set$ with cartesian product, until you reach the discussion of a \emph{linear system of fields} later in this section, where $\cS = \Vect$, and \S \ref{sec:homological-fields}, where $\cS = \Kom$.
    24 %Fix a top dimension $n$, and a symmetric monoidal category $\cS$ whose objects are sets. While reading the definition, you should just think about the case $\cS = \Set$ with cartesian product, until you reach the discussion of a \emph{linear system of fields} later in this section, where $\cS = \Vect$, and \S \ref{sec:homological-fields}, where $\cS = \Kom$.
    25 
    25 
    26 A $n$-dimensional {\it system of fields} in $\cS$
    26 A $n$-dimensional {\it system of fields} in $\cS$
    27 is a collection of functors $\cC_k : \cM_k \to \Set$ for $0 \leq k \leq n$
    27 is a collection of functors $\cC_k : \cM_k \to \Set$ for $0 \leq k \leq n$
    28 together with some additional data and satisfying some additional conditions, all specified below.
    28 together with some additional data and satisfying some additional conditions, all specified below.
    29 
       
    30 \nn{refer somewhere to my TQFT notes \cite{kw:tqft}}
       
    31 
    29 
    32 Before finishing the definition of fields, we give two motivating examples
    30 Before finishing the definition of fields, we give two motivating examples
    33 (actually, families of examples) of systems of fields.
    31 (actually, families of examples) of systems of fields.
    34 
    32 
    35 The first examples: Fix a target space $B$, and let $\cC(X)$ be the set of continuous maps
    33 The first examples: Fix a target space $B$, and let $\cC(X)$ be the set of continuous maps
   388 \item A local relation field $u \in U(B; c)$
   386 \item A local relation field $u \in U(B; c)$
   389 (same $c$ as previous bullet).
   387 (same $c$ as previous bullet).
   390 \end{itemize}
   388 \end{itemize}
   391 (See Figure \ref{blob1diagram}.)
   389 (See Figure \ref{blob1diagram}.)
   392 \begin{figure}[!ht]\begin{equation*}
   390 \begin{figure}[!ht]\begin{equation*}
   393 \mathfig{.9}{tempkw/blob1diagram}
   391 \mathfig{.9}{definition/single-blob}
   394 \end{equation*}\caption{A 1-blob diagram.}\label{blob1diagram}\end{figure}
   392 \end{equation*}\caption{A 1-blob diagram.}\label{blob1diagram}\end{figure}
   395 In order to get the linear structure correct, we (officially) define
   393 In order to get the linear structure correct, we (officially) define
   396 \[
   394 \[
   397 	\bc_1(X) \deq \bigoplus_B \bigoplus_c U(B; c) \otimes \lf(X \setmin B; c) .
   395 	\bc_1(X) \deq \bigoplus_B \bigoplus_c U(B; c) \otimes \lf(X \setmin B; c) .
   398 \]
   396 \]
   421 A disjoint 2-blob diagram consists of
   419 A disjoint 2-blob diagram consists of
   422 \begin{itemize}
   420 \begin{itemize}
   423 \item A pair of closed balls (blobs) $B_0, B_1 \sub X$ with disjoint interiors.
   421 \item A pair of closed balls (blobs) $B_0, B_1 \sub X$ with disjoint interiors.
   424 \item A field $r \in \cC(X \setmin (B_0 \cup B_1); c_0, c_1)$
   422 \item A field $r \in \cC(X \setmin (B_0 \cup B_1); c_0, c_1)$
   425 (where $c_i \in \cC(\bd B_i)$).
   423 (where $c_i \in \cC(\bd B_i)$).
   426 \item Local relation fields $u_i \in U(B_i; c_i)$, $i=1,2$.
   424 \item Local relation fields $u_i \in U(B_i; c_i)$, $i=1,2$. \nn{We're inconsistent with the indexes -- are they 0,1 or 1,2? I'd prefer 1,2.}
   427 \end{itemize}
   425 \end{itemize}
   428 (See Figure \ref{blob2ddiagram}.)
   426 (See Figure \ref{blob2ddiagram}.)
   429 \begin{figure}[!ht]\begin{equation*}
   427 \begin{figure}[!ht]\begin{equation*}
   430 \mathfig{.9}{tempkw/blob2ddiagram}
   428 \mathfig{.9}{definition/disjoint-blobs}
   431 \end{equation*}\caption{A disjoint 2-blob diagram.}\label{blob2ddiagram}\end{figure}
   429 \end{equation*}\caption{A disjoint 2-blob diagram.}\label{blob2ddiagram}\end{figure}
   432 We also identify $(B_0, B_1, u_0, u_1, r)$ with $-(B_1, B_0, u_1, u_0, r)$;
   430 We also identify $(B_0, B_1, u_0, u_1, r)$ with $-(B_1, B_0, u_1, u_0, r)$;
   433 reversing the order of the blobs changes the sign.
   431 reversing the order of the blobs changes the sign.
   434 Define $\bd(B_0, B_1, u_0, u_1, r) = 
   432 Define $\bd(B_0, B_1, u_0, u_1, r) = 
   435 (B_1, u_1, u_0\bullet r) - (B_0, u_0, u_1\bullet r) \in \bc_1(X)$.
   433 (B_1, u_1, u_0\bullet r) - (B_0, u_0, u_1\bullet r) \in \bc_1(X)$.
   445 (for some $c_0 \in \cC(\bd B_0)$), which is splittable along $\bd B_1$.
   443 (for some $c_0 \in \cC(\bd B_0)$), which is splittable along $\bd B_1$.
   446 \item A local relation field $u_0 \in U(B_0; c_0)$.
   444 \item A local relation field $u_0 \in U(B_0; c_0)$.
   447 \end{itemize}
   445 \end{itemize}
   448 (See Figure \ref{blob2ndiagram}.)
   446 (See Figure \ref{blob2ndiagram}.)
   449 \begin{figure}[!ht]\begin{equation*}
   447 \begin{figure}[!ht]\begin{equation*}
   450 \mathfig{.9}{tempkw/blob2ndiagram}
   448 \mathfig{.9}{definition/nested-blobs}
   451 \end{equation*}\caption{A nested 2-blob diagram.}\label{blob2ndiagram}\end{figure}
   449 \end{equation*}\caption{A nested 2-blob diagram.}\label{blob2ndiagram}\end{figure}
   452 Let $r = r_1 \bullet r'$, where $r_1 \in \cC(B_1 \setmin B_0; c_0, c_1)$
   450 Let $r = r_1 \bullet r'$, where $r_1 \in \cC(B_1 \setmin B_0; c_0, c_1)$
   453 (for some $c_1 \in \cC(B_1)$) and
   451 (for some $c_1 \in \cC(B_1)$) and
   454 $r' \in \cC(X \setmin B_1; c_1)$.
   452 $r' \in \cC(X \setmin B_1; c_1)$.
   455 Define $\bd(B_0, B_1, u_0, r) = (B_1, u_0\bullet r_1, r') - (B_0, u_0, r)$.
   453 Define $\bd(B_0, B_1, u_0, r) = (B_1, u_0\bullet r_1, r') - (B_0, u_0, r)$.