text/appendixes/misc_appendices.tex
changeset 321 76c301fdf0a2
parent 320 4b64f9c6313f
child 322 091c36b943e7
equal deleted inserted replaced
320:4b64f9c6313f 321:76c301fdf0a2
     1 %!TEX root = ../../blob1.tex
       
     2 
       
     3 
       
     4 
       
     5 %\section{Morphisms and duals of topological $A_\infty$ modules}
       
     6 %\label{sec:A-infty-hom-and-duals}%
       
     7 %
       
     8 %\begin{defn}
       
     9 %If $\cM$ and $\cN$ are topological $A_\infty$ left modules over a topological $A_\infty$ category $\cC$, then a morphism $f: \cM \to \cN$ consists of a chain map $f:\cM(J,p;b) \to \cN(J,p;b)$ for each right marked interval $(J,p)$ with a boundary condition $b$, such that  for each interval $J'$ the diagram
       
    10 %\begin{equation*}
       
    11 %\xymatrix{
       
    12 %\cC(J';a,b) \tensor \cM(J,p;b) \ar[r]^{\text{gl}} \ar[d]^{\id \tensor f} & \cM(J' cup J,a) \ar[d]^f \\
       
    13 %\cC(J';a,b) \tensor \cN(J,p;b) \ar[r]^{\text{gl}}                                & \cN(J' cup J,a) 
       
    14 %}
       
    15 %\end{equation*}
       
    16 %commutes on the nose, and the diagram
       
    17 %\begin{equation*}
       
    18 %\xymatrix{
       
    19 %\CD{(J,p) \to (J',p')} \tensor \cM(J,p;a) \ar[r]^{\text{ev}} \ar[d]^{\id \tensor f} & \cM(J',p';a) \ar[d]^f \\
       
    20 %\CD{(J,p) \to (J',p')} \tensor \cN(J,p;a) \ar[r]^{\text{ev}}  & \cN(J',p';a) \\
       
    21 %}
       
    22 %\end{equation*}
       
    23 %commutes up to a weakly unique homotopy.
       
    24 %\end{defn}
       
    25 
       
    26 %The variations required for right modules and bimodules should be obvious.
       
    27 
       
    28 %\todo{duals}
       
    29 %\todo{ the functors $\hom_{\lmod{\cC}}\left(\cM \to -\right)$ and $\cM^* \tensor_{\cC} -$ from $\lmod{\cC}$ to $\Vect$ are naturally isomorphic}
       
    30