text/intro.tex
changeset 136 77a311b5e2df
parent 132 15a34e2f3b39
child 145 b5c1a6aec50d
equal deleted inserted replaced
135:b15dafe85ee1 136:77a311b5e2df
    86 
    86 
    87 We then show that blob homology enjoys the following properties.
    87 We then show that blob homology enjoys the following properties.
    88 
    88 
    89 \begin{property}[Functoriality]
    89 \begin{property}[Functoriality]
    90 \label{property:functoriality}%
    90 \label{property:functoriality}%
    91 Blob homology is functorial with respect to homeomorphisms. That is, 
    91 The blob complex is functorial with respect to homeomorphisms. That is, 
    92 for fixed $n$-category / fields $\cC$, the association
    92 for fixed $n$-category / fields $\cC$, the association
    93 \begin{equation*}
    93 \begin{equation*}
    94 X \mapsto \bc_*^{\cC}(X)
    94 X \mapsto \bc_*^{\cC}(X)
    95 \end{equation*}
    95 \end{equation*}
    96 is a functor from $n$-manifolds and homeomorphisms between them to chain complexes and isomorphisms between them.
    96 is a functor from $n$-manifolds and homeomorphisms between them to chain complexes and isomorphisms between them.
    97 \end{property}
    97 \end{property}
    98 
    98 
    99 \nn{should probably also say something about being functorial in $\cC$}
    99 The blob complex is also functorial with respect to $\cC$, although we will not address this in detail here.
   100 
   100 
   101 \begin{property}[Disjoint union]
   101 \begin{property}[Disjoint union]
   102 \label{property:disjoint-union}
   102 \label{property:disjoint-union}
   103 The blob complex of a disjoint union is naturally the tensor product of the blob complexes.
   103 The blob complex of a disjoint union is naturally the tensor product of the blob complexes.
   104 \begin{equation*}
   104 \begin{equation*}
   105 \bc_*(X_1 \du X_2) \iso \bc_*(X_1) \tensor \bc_*(X_2)
   105 \bc_*(X_1 \du X_2) \iso \bc_*(X_1) \tensor \bc_*(X_2)
   106 \end{equation*}
   106 \end{equation*}
   107 \end{property}
   107 \end{property}
   108 
   108 
       
   109 If an $n$-manifold $X_\text{cut}$ contains $Y \sqcup Y^\text{op}$ as a codimension $0$-submanifold of its boundary, write $X_\text{glued} = X_\text{cut} \bigcup_{Y}\selfarrow$ for the manifold obtained by gluing together $Y$ and $Y^\text{op}$. Note that this includes the case of gluing two disjoint manifolds together.
   109 \begin{property}[Gluing map]
   110 \begin{property}[Gluing map]
   110 \label{property:gluing-map}%
   111 \label{property:gluing-map}%
   111 If $X_1$ and $X_2$ are $n$-manifolds, with $Y$ a codimension $0$-submanifold of $\bdy X_1$, and $Y^{\text{op}}$ a codimension $0$-submanifold of $\bdy X_2$,
   112 %If $X_1$ and $X_2$ are $n$-manifolds, with $Y$ a codimension $0$-submanifold of $\bdy X_1$, and $Y^{\text{op}}$ a codimension $0$-submanifold of $\bdy X_2$, there is a chain map
   112 there is a chain map
   113 %\begin{equation*}
   113 \begin{equation*}
   114 %\gl_Y: \bc_*(X_1) \tensor \bc_*(X_2) \to \bc_*(X_1 \cup_Y X_2).
   114 \gl_Y: \bc_*(X_1) \tensor \bc_*(X_2) \to \bc_*(X_1 \cup_Y X_2).
   115 %\end{equation*}
   115 \end{equation*}
   116 Given a gluing $X_\mathrm{cut} \to X_\mathrm{glued}$, there is
   116 \nn{alternate version:}Given a gluing $X_\mathrm{cut} \to X_\mathrm{gl}$, there is
       
   117 a natural map
   117 a natural map
   118 \[
   118 \[
   119 	\bc_*(X_\mathrm{cut}) \to \bc_*(X_\mathrm{gl}) .
   119 	\bc_*(X_\mathrm{cut}) \to \bc_*(X_\mathrm{glued}) .
   120 \]
   120 \]
   121 (Natural with respect to homeomorphisms, and also associative with respect to iterated gluings.)
   121 (Natural with respect to homeomorphisms, and also associative with respect to iterated gluings.)
   122 \end{property}
   122 \end{property}
   123 
   123 
   124 \begin{property}[Contractibility]
   124 \begin{property}[Contractibility]
   125 \label{property:contractibility}%
   125 \label{property:contractibility}%
   126 \todo{Err, requires a splitting?}
   126 \todo{Err, requires a splitting?}
   127 The blob complex for an $n$-category on an $n$-ball is quasi-isomorphic to its $0$-th homology.
   127 The blob complex on an $n$-ball is contractible in the sense that it is quasi-isomorphic to its $0$-th homology. Moreover, the $0$-th homology of balls can be canonically identified with the original $n$-category $\cC$.
   128 \begin{equation}
   128 \begin{equation}
   129 \xymatrix{\bc_*^{\cC}(B^n) \ar[r]^{\iso}_{\text{qi}} & H_0(\bc_*^{\cC}(B^n))}
   129 \xymatrix{\bc_*^{\cC}(B^n) \ar[r]^{\iso}_{\text{qi}} & H_0(\bc_*^{\cC}(B^n))}
   130 \end{equation}
   130 \end{equation}
   131 \todo{Say that this is just the original $n$-category?}
       
   132 \end{property}
   131 \end{property}
   133 
   132 
   134 \begin{property}[Skein modules]
   133 \begin{property}[Skein modules]
   135 \label{property:skein-modules}%
   134 \label{property:skein-modules}%
   136 The $0$-th blob homology of $X$ is the usual 
   135 The $0$-th blob homology of $X$ is the usual 
   144 \begin{property}[Hochschild homology when $X=S^1$]
   143 \begin{property}[Hochschild homology when $X=S^1$]
   145 \label{property:hochschild}%
   144 \label{property:hochschild}%
   146 The blob complex for a $1$-category $\cC$ on the circle is
   145 The blob complex for a $1$-category $\cC$ on the circle is
   147 quasi-isomorphic to the Hochschild complex.
   146 quasi-isomorphic to the Hochschild complex.
   148 \begin{equation*}
   147 \begin{equation*}
   149 \xymatrix{\bc_*^{\cC}(S^1) \ar[r]^{\iso}_{\text{qi}} & HC_*(\cC)}
   148 \xymatrix{\bc_*^{\cC}(S^1) \ar[r]^{\iso}_{\text{qi}} & \HC_*(\cC)}
   150 \end{equation*}
   149 \end{equation*}
   151 \end{property}
   150 \end{property}
   152 
   151 
   153 \nn{$HC_*$ or $\rm{Hoch}_*$?}
   152 
   154 
   153 \begin{property}[$C_*(\Diff(-))$ action]
   155 \begin{property}[$C_*(\Diff(\cdot))$ action]
       
   156 \label{property:evaluation}%
   154 \label{property:evaluation}%
   157 There is a chain map
   155 There is a chain map
   158 \begin{equation*}
   156 \begin{equation*}
   159 \ev_X: \CD{X} \tensor \bc_*(X) \to \bc_*(X).
   157 \ev_X: \CD{X} \tensor \bc_*(X) \to \bc_*(X).
   160 \end{equation*}
   158 \end{equation*}
   173 \end{equation*}
   171 \end{equation*}
   174 \nn{should probably say something about associativity here (or not?)}
   172 \nn{should probably say something about associativity here (or not?)}
   175 \nn{maybe do self-gluing instead of 2 pieces case}
   173 \nn{maybe do self-gluing instead of 2 pieces case}
   176 \end{property}
   174 \end{property}
   177 
   175 
       
   176 There is a version of the blob complex for $\cC$ an $A_\infty$ $n$-category
       
   177 instead of a garden variety $n$-category.
       
   178 
       
   179 \begin{property}[Product formula]
       
   180 Let $M^n = Y^{n-k}\times W^k$ and let $\cC$ be an $n$-category.
       
   181 Let $A_*(Y)$ be the $A_\infty$ $k$-category associated to $Y$ via blob homology, which associates to each $k$-ball $D$ the complex $A_*(Y)(D) = \bc_*(Y \times D, \cC)$.
       
   182 Then
       
   183 \[
       
   184 	\bc_*(Y^{n-k}\times W^k, \cC) \simeq \bc_*(W, A_*(Y)) .
       
   185 \]
       
   186 Note on the right here we have the version of the blob complex for $A_\infty$ $n$-categories.
       
   187 \nn{say something about general fiber bundles?}
       
   188 \end{property}
   178 
   189 
   179 \begin{property}[Gluing formula]
   190 \begin{property}[Gluing formula]
   180 \label{property:gluing}%
   191 \label{property:gluing}%
   181 \mbox{}% <-- gets the indenting right
   192 \mbox{}% <-- gets the indenting right
   182 \begin{itemize}
   193 \begin{itemize}
   184 naturally an $A_\infty$ category. % We'll write $\bc_*(Y)$ for $\bc_*(Y \times I)$ below.
   195 naturally an $A_\infty$ category. % We'll write $\bc_*(Y)$ for $\bc_*(Y \times I)$ below.
   185 
   196 
   186 \item For any $n$-manifold $X$, with $Y$ a codimension $0$-submanifold of its boundary, the blob homology of $X$ is naturally an
   197 \item For any $n$-manifold $X$, with $Y$ a codimension $0$-submanifold of its boundary, the blob homology of $X$ is naturally an
   187 $A_\infty$ module for $\bc_*(Y \times I)$.
   198 $A_\infty$ module for $\bc_*(Y \times I)$.
   188 
   199 
   189 \item For any $n$-manifold $X$, with $Y \cup Y^{\text{op}}$ a codimension
   200 \item For any $n$-manifold $X_\text{glued} = X_\text{cut} \bigcup_Y \selfarrow$, the blob complex $\bc_*(X_\text{glued})$ is the $A_\infty$ self-tensor product of
   190 $0$-submanifold of its boundary, the blob homology of $X'$, obtained from
   201 $\bc_*(X_\text{cut})$ as an $\bc_*(Y \times I)$-bimodule.
   191 $X$ by gluing along $Y$, is the $A_\infty$ self-tensor product of
   202 \begin{equation*}
   192 $\bc_*(X)$ as an $\bc_*(Y \times I)$-bimodule.
   203 \bc_*(X_\text{glued}) \simeq \bc_*(X_\text{cut}) \Tensor^{A_\infty}_{\mathclap{\bc_*(Y \times I)}} \selfarrow
   193 \begin{equation*}
       
   194 \bc_*(X') \iso \bc_*(X) \Tensor^{A_\infty}_{\mathclap{\bc_*(Y \times I)}} \!\!\!\!\!\!\xymatrix{ \ar@(ru,rd)@<-1ex>[]}
       
   195 \end{equation*}
   204 \end{equation*}
   196 \end{itemize}
   205 \end{itemize}
   197 \end{property}
   206 \end{property}
   198 
   207 
   199 
   208 
   200 
   209 
   201 \begin{property}[Relation to mapping spaces]
   210 \begin{property}[Relation to mapping spaces]
   202 There is a version of the blob complex for $C$ an $A_\infty$ $n$-category
       
   203 instead of a garden variety $n$-category.
       
   204 
       
   205 Let $\pi^\infty_{\le n}(W)$ denote the $A_\infty$ $n$-category based on maps 
   211 Let $\pi^\infty_{\le n}(W)$ denote the $A_\infty$ $n$-category based on maps 
   206 $B^n \to W$.
   212 $B^n \to W$.
   207 (The case $n=1$ is the usual $A_\infty$ category of paths in $W$.)
   213 (The case $n=1$ is the usual $A_\infty$ category of paths in $W$.)
   208 Then $\bc_*(M, \pi^\infty_{\le n}(W))$ is 
   214 Then 
   209 homotopy equivalent to $C_*(\{\text{maps}\; M \to W\})$.
   215 $$\bc_*(M, \pi^\infty_{\le n}(W) \simeq \CM{M}{W}.$$
   210 \end{property}
   216 \end{property}
   211 
       
   212 
       
   213 
       
   214 
       
   215 \begin{property}[Product formula]
       
   216 Let $M^n = Y^{n-k}\times W^k$ and let $C$ be an $n$-category.
       
   217 Let $A_*(Y)$ be the $A_\infty$ $k$-category associated to $Y$ via blob homology.
       
   218 Then
       
   219 \[
       
   220 	\bc_*(Y^{n-k}\times W^k, C) \simeq \bc_*(W, A_*(Y)) .
       
   221 \]
       
   222 \nn{say something about general fiber bundles?}
       
   223 \end{property}
       
   224 
       
   225 
       
   226 
       
   227 
   217 
   228 \begin{property}[Higher dimensional Deligne conjecture]
   218 \begin{property}[Higher dimensional Deligne conjecture]
   229 The singular chains of the $n$-dimensional fat graph operad act on blob cochains.
   219 The singular chains of the $n$-dimensional fat graph operad act on blob cochains.
   230 
   220 \end{property}
       
   221 \begin{rem}
   231 The $n$-dimensional fat graph operad can be thought of as a sequence of general surgeries
   222 The $n$-dimensional fat graph operad can be thought of as a sequence of general surgeries
   232 of $n$-manifolds
   223 of $n$-manifolds
   233 $R_i \cup A_i \leadsto R_i \cup B_i$ together with mapping cylinders of diffeomorphisms
   224 $R_i \cup A_i \leadsto R_i \cup B_i$ together with mapping cylinders of diffeomorphisms
   234 $f_i: R_i\cup B_i \to R_{i+1}\cup A_{i+1}$.
   225 $f_i: R_i\cup B_i \to R_{i+1}\cup A_{i+1}$.
   235 (Note that the suboperad where $A_i$, $B_i$ and $R_i\cup A_i$ are all diffeomorphic to 
   226 (Note that the suboperad where $A_i$, $B_i$ and $R_i\cup A_i$ are all diffeomorphic to 
   236 the $n$-ball is equivalent to the little $n{+}1$-disks operad.)
   227 the $n$-ball is equivalent to the little $n{+}1$-disks operad.)
   237 
   228 If $A$ and $B$ are $n$-manifolds sharing the same boundary, we define
   238 If $A$ and $B$ are $n$-manifolds sharing the same boundary, define
       
   239 the blob cochains $\bc^*(A, B)$ (analogous to Hochschild cohomology) to be
   229 the blob cochains $\bc^*(A, B)$ (analogous to Hochschild cohomology) to be
   240 $A_\infty$ maps from $\bc_*(A)$ to $\bc_*(B)$, where we think of both
   230 $A_\infty$ maps from $\bc_*(A)$ to $\bc_*(B)$, where we think of both
   241 (collections of) complexes as modules over the $A_\infty$ category associated to $\bd A = \bd B$.
   231 collections of complexes as modules over the $A_\infty$ category associated to $\bd A = \bd B$.
   242 The ``holes" in the above 
   232 The ``holes" in the above 
   243 $n$-dimensional fat graph operad are labeled by $\bc^*(A_i, B_i)$.
   233 $n$-dimensional fat graph operad are labeled by $\bc^*(A_i, B_i)$.
   244 \end{property}
   234 \end{rem}
   245 
       
   246 
   235 
   247 
   236 
   248 
   237 
   249 
   238 
   250 
   239