text/a_inf_blob.tex
changeset 901 77a80b7eb98e
parent 896 deeff619087e
child 907 fcd380e21e7c
equal deleted inserted replaced
900:2efd26072c91 901:77a80b7eb98e
     1 %!TEX root = ../blob1.tex
     1 %!TEX root = ../blob1.tex
     2 
     2 
     3 \section{The blob complex for \texorpdfstring{$A_\infty$}{A-infinity} \texorpdfstring{$n$}{n}-categories}
     3 \section{The blob complex for \texorpdfstring{$A_\infty$}{A-infinity} \texorpdfstring{$n$}{n}-categories}
     4 \label{sec:ainfblob}
     4 \label{sec:ainfblob}
     5 Given an $A_\infty$ $n$-category $\cC$ and an $n$-manifold $M$, we make the 
     5 Given an $A_\infty$ $n$-category $\cC$ and an $n$-manifold $M$, we make the following 
     6 anticlimactically tautological definition of the blob
     6 anticlimactically tautological definition of the blob
     7 complex $\bc_*(M;\cC)$ to be the homotopy colimit $\cl{\cC}(M)$ of \S\ref{ss:ncat_fields}.
     7 complex.
       
     8 \begin{defn}
       
     9 The blob complex
       
    10  $\bc_*(M;\cC)$ of an $n$-manifold $n$ with coefficients in an $A_\infty$ $n$-category is the homotopy colimit $\cl{\cC}(M)$ of \S\ref{ss:ncat_fields}.
       
    11 \end{defn}
     8 
    12 
     9 We will show below 
    13 We will show below 
    10 in Corollary \ref{cor:new-old}
    14 in Corollary \ref{cor:new-old}
    11 that when $\cC$ is obtained from a system of fields $\cE$ 
    15 that when $\cC$ is obtained from a system of fields $\cE$ 
    12 as the blob complex of an $n$-ball (see Example \ref{ex:blob-complexes-of-balls}), 
    16 as the blob complex of an $n$-ball (see Example \ref{ex:blob-complexes-of-balls}), 
   333 
   337 
   334 
   338 
   335 \subsection{A gluing theorem}
   339 \subsection{A gluing theorem}
   336 \label{sec:gluing}
   340 \label{sec:gluing}
   337 
   341 
   338 Next we prove a gluing theorem.
   342 Next we prove a gluing theorem. Throughout this section fix a particular $n$-dimensional system of fields $\cE$ and local relations. Each blob complex below is  with respect to this $\cE$.
   339 Let $X$ be a closed $k$-manifold with a splitting $X = X'_1\cup_Y X'_2$.
   343 Let $X$ be a closed $k$-manifold with a splitting $X = X'_1\cup_Y X'_2$.
   340 We will need an explicit collar on $Y$, so rewrite this as
   344 We will need an explicit collar on $Y$, so rewrite this as
   341 $X = X_1\cup (Y\times J) \cup X_2$.
   345 $X = X_1\cup (Y\times J) \cup X_2$.
   342 Given this data we have:
   346 Given this data we have:
   343 \begin{itemize}
   347 \begin{itemize}
   362 (It will appear in a future paper.)
   366 (It will appear in a future paper.)
   363 So we content ourselves with
   367 So we content ourselves with
   364 
   368 
   365 \begin{thm}
   369 \begin{thm}
   366 \label{thm:gluing}
   370 \label{thm:gluing}
   367 When $k=n$ above, $\bc(X)$ is homotopy equivalent to $\bc(X_1) \otimes_{\bc(Y), J} \bc(X_2)$.
   371 Suppose $X$ is an $n$-manifold, and $X = X_1\cup (Y\times J) \cup X_2$ (i.e. just as with  $k=n$ above). Then $\bc(X)$ is homotopy equivalent to the $A_\infty$ tensor product $\bc(X_1) \otimes_{\bc(Y), J} \bc(X_2)$.
   368 \end{thm}
   372 \end{thm}
   369 
   373 
   370 \begin{proof}
   374 \begin{proof}
   371 %We will assume $k=n$; the other cases are similar.
   375 %We will assume $k=n$; the other cases are similar.
   372 The proof is similar to that of Theorem \ref{thm:product}.
   376 The proof is similar to that of Theorem \ref{thm:product}.