text/a_inf_blob.tex
changeset 133 7a880cdaac70
parent 123 a5e863658e74
child 134 395bd663e20d
equal deleted inserted replaced
132:15a34e2f3b39 133:7a880cdaac70
   166 \begin{proof}
   166 \begin{proof}
   167 Apply Theorem \ref{product_thm} with the fiber $F$ equal to a point.
   167 Apply Theorem \ref{product_thm} with the fiber $F$ equal to a point.
   168 \end{proof}
   168 \end{proof}
   169 
   169 
   170 \medskip
   170 \medskip
       
   171 
       
   172 Next we prove a gluing theorem.
       
   173 Let $X$ be a closed $k$-manifold with a splitting $X = X'_1\cup_Y X'_2$.
       
   174 We will need an explicit collar on $Y$, so rewrite this as
       
   175 $X = X_1\cup (Y\times J) \cup X_2$.
       
   176 \nn{need figure}
       
   177 Given this data we have: \nn{need refs to above for these}
       
   178 \begin{itemize}
       
   179 \item An $A_\infty$ $n{-}k$-category $\bc(X)$, which assigns to an $m$-ball
       
   180 $D$ fields on $D\times X$ (for $m+k < n$) or the blob complex $\bc_*(D\times X; c)$
       
   181 (for $m+k = n$). \nn{need to explain $c$}.
       
   182 \item An $A_\infty$ $n{-}k{+}1$-category $\bc(Y)$, defined similarly.
       
   183 \item Two $\bc(Y)$ modules $\bc(X_1)$ and $\bc(X_2)$, which assign to a marked
       
   184 $m$-ball $(D, H)$ either fields on $(D\times Y) \cup (H\times X_i)$ (if $m+k < n$)
       
   185 or the blob complex $\bc_*((D\times Y) \cup (H\times X_i))$ (if $m+k = n$).
       
   186 \end{itemize}
       
   187 
       
   188 \begin{thm}
       
   189 $\bc(X) \cong \bc(X_1) \otimes_{\bc(Y), J} \bc(X_2)$.
       
   190 \end{thm}
       
   191 
       
   192 \begin{proof}
       
   193 The proof is similar to that of Theorem \ref{product_thm}.
       
   194 \nn{need to say something about dimensions less than $n$, 
       
   195 but for now concentrate on top dimension.}
       
   196 
       
   197 Let $\cT$ denote the $n{-}k$-category $\bc(X_1) \otimes_{\bc(Y), J} \bc(X_2)$.
       
   198 Let $D$ be an $n{-}k$-ball.
       
   199 There is an obvious map from $\cT(D)$ to $\bc_*(D\times X)$.
       
   200 To get a map in the other direction, we replace $\bc_*(D\times X)$ with a subcomplex
       
   201 $\cS_*$ which is adapted to a fine open cover of $D\times X$.
       
   202 For sufficiently small $j$ (depending on the cover), we can find, for each $j$-blob diagram $b$
       
   203 on $D\times X$, a decomposition of $J$ such that $b$ splits on the corresponding
       
   204 decomposition of $D\times X$.
       
   205 The proof that these two maps are inverse to each other is the same as in
       
   206 Theorem \ref{product_thm}.
       
   207 \end{proof}
       
   208 
       
   209 
       
   210 \medskip
   171 \hrule
   211 \hrule
   172 \medskip
   212 \medskip
   173 
   213 
   174 \nn{to be continued...}
   214 \nn{to be continued...}
   175 \medskip
   215 \medskip
   176 
   216 \nn{still to do: fiber bundles, general maps}
       
   217