text/ncat.tex
changeset 435 84834a1fdd50
parent 426 8aca80203f9d
child 438 0d62ea7c653d
child 439 10f0f68cafb4
equal deleted inserted replaced
434:785e4953a811 435:84834a1fdd50
  1432 Fix a topological $n$-category or $A_\infty$ $n$-category  $\cC$.
  1432 Fix a topological $n$-category or $A_\infty$ $n$-category  $\cC$.
  1433 Let $W$ be a $k$-manifold ($k\le n$),
  1433 Let $W$ be a $k$-manifold ($k\le n$),
  1434 let $\{Y_i\}$ be a collection of disjoint codimension 0 submanifolds of $\bd W$,
  1434 let $\{Y_i\}$ be a collection of disjoint codimension 0 submanifolds of $\bd W$,
  1435 and let $\cN = (\cN_i)$ be an assignment of a $\cC$ module $\cN_i$ to $Y_i$.
  1435 and let $\cN = (\cN_i)$ be an assignment of a $\cC$ module $\cN_i$ to $Y_i$.
  1436 
  1436 
  1437 %Let $\cC$ be an [$A_\infty$] $n$-category, let $W$ be a $k$-manifold ($k\le n$),
       
  1438 %and let $\cN = (\cN_i)$ be an assignment of a $\cC$ module $\cN_i$ to each boundary 
       
  1439 %component $\bd_i W$ of $W$.
       
  1440 %(More generally, each $\cN_i$ could label some codimension zero submanifold of $\bd W$.)
       
  1441 
       
  1442 We will define a set $\cC(W, \cN)$ using a colimit construction similar to 
  1437 We will define a set $\cC(W, \cN)$ using a colimit construction similar to 
  1443 the one appearing in \S \ref{ss:ncat_fields} above.
  1438 the one appearing in \S \ref{ss:ncat_fields} above.
  1444 (If $k = n$ and our $n$-categories are enriched, then
  1439 (If $k = n$ and our $n$-categories are enriched, then
  1445 $\cC(W, \cN)$ will have additional structure; see below.)
  1440 $\cC(W, \cN)$ will have additional structure; see below.)
  1446 
  1441 
  1447 Define a permissible decomposition of $W$ to be a decomposition
  1442 Define a permissible decomposition of $W$ to be a decomposition
  1448 \[
  1443 \[
  1449 	W = \left(\bigcup_a X_a\right) \cup \left(\bigcup_{i,b} M_{ib}\right) ,
  1444 	W = \left(\bigcup_a X_a\right) \cup \left(\bigcup_{i,b} M_{ib}\right) ,
  1450 \]
  1445 \]
  1451 where each $X_a$ is a plain $k$-ball (disjoint from $\bd W$) and
  1446 where each $X_a$ is a plain $k$-ball (disjoint from $\cup Y_i$) and
  1452 each $M_{ib}$ is a marked $k$-ball intersecting $\bd_i W$,
  1447 each $M_{ib}$ is a marked $k$-ball intersecting $Y_i$,
  1453 with $M_{ib}\cap Y_i$ being the marking.
  1448 with $M_{ib}\cap Y_i$ being the marking.
  1454 (See Figure \ref{mblabel}.)
  1449 (See Figure \ref{mblabel}.)
  1455 \begin{figure}[!ht]\begin{equation*}
  1450 \begin{figure}[t]
       
  1451 \begin{equation*}
  1456 \mathfig{.4}{ncat/mblabel}
  1452 \mathfig{.4}{ncat/mblabel}
  1457 \end{equation*}\caption{A permissible decomposition of a manifold
  1453 \end{equation*}
       
  1454 \caption{A permissible decomposition of a manifold
  1458 whose boundary components are labeled by $\cC$ modules $\{\cN_i\}$.
  1455 whose boundary components are labeled by $\cC$ modules $\{\cN_i\}$.
  1459 Marked balls are shown shaded, plain balls are unshaded.}\label{mblabel}\end{figure}
  1456 Marked balls are shown shaded, plain balls are unshaded.}\label{mblabel}
       
  1457 \end{figure}
  1460 Given permissible decompositions $x$ and $y$, we say that $x$ is a refinement
  1458 Given permissible decompositions $x$ and $y$, we say that $x$ is a refinement
  1461 of $y$, or write $x \le y$, if each ball of $y$ is a union of balls of $x$.
  1459 of $y$, or write $x \le y$, if each ball of $y$ is a union of balls of $x$.
  1462 This defines a partial ordering $\cell(W)$, which we will think of as a category.
  1460 This defines a partial ordering $\cell(W)$, which we will think of as a category.
  1463 (The objects of $\cell(D)$ are permissible decompositions of $W$, and there is a unique
  1461 (The objects of $\cell(D)$ are permissible decompositions of $W$, and there is a unique
  1464 morphism from $x$ to $y$ if and only if $x$ is a refinement of $y$.)
  1462 morphism from $x$ to $y$ if and only if $x$ is a refinement of $y$.)
  1470 \[
  1468 \[
  1471 	\psi_\cN(x) \sub \left(\prod_a \cC(X_a)\right) \times \left(\prod_{ib} \cN_i(M_{ib})\right)
  1469 	\psi_\cN(x) \sub \left(\prod_a \cC(X_a)\right) \times \left(\prod_{ib} \cN_i(M_{ib})\right)
  1472 \]
  1470 \]
  1473 such that the restrictions to the various pieces of shared boundaries amongst the
  1471 such that the restrictions to the various pieces of shared boundaries amongst the
  1474 $X_a$ and $M_{ib}$ all agree.
  1472 $X_a$ and $M_{ib}$ all agree.
  1475 (That is, the fibered product over the boundary maps.)
  1473 (That is, the fibered product over the boundary restriction maps.)
  1476 If $x$ is a refinement of $y$, define a map $\psi_\cN(x)\to\psi_\cN(y)$
  1474 If $x$ is a refinement of $y$, define a map $\psi_\cN(x)\to\psi_\cN(y)$
  1477 via the gluing (composition or action) maps from $\cC$ and the $\cN_i$.
  1475 via the gluing (composition or action) maps from $\cC$ and the $\cN_i$.
  1478 
  1476 
  1479 We now define the set $\cC(W, \cN)$ to be the colimit of the functor $\psi_\cN$.
  1477 We now define the set $\cC(W, \cN)$ to be the colimit of the functor $\psi_\cN$.
  1480 (As usual, if $k=n$ and we are in the $A_\infty$ case, then ``colimit" means
  1478 (As in \S\ref{ss:ncat-coend}, if $k=n$ we take a colimit in whatever
  1481 homotopy colimit.)
  1479 category we are enriching over, and if additionally we are in the $A_\infty$ case, 
       
  1480 then we use a homotopy colimit.)
       
  1481 
       
  1482 \medskip
  1482 
  1483 
  1483 If $D$ is an $m$-ball, $0\le m \le n-k$, then we can similarly define
  1484 If $D$ is an $m$-ball, $0\le m \le n-k$, then we can similarly define
  1484 $\cC(D\times W, \cN)$, where in this case $\cN_i$ labels the submanifold 
  1485 $\cC(D\times W, \cN)$, where in this case $\cN_i$ labels the submanifold 
  1485 $D\times Y_i \sub \bd(D\times W)$.
  1486 $D\times Y_i \sub \bd(D\times W)$.
  1486 It is not hard to see that the assignment $D \mapsto \cC(D\times W, \cN)$
  1487 It is not hard to see that the assignment $D \mapsto \cC(D\times W, \cN)$
  1487 has the structure of an $n{-}k$-category, which we call $\cT(W, \cN)(D)$.
  1488 has the structure of an $n{-}k$-category.
  1488 
  1489 
  1489 \medskip
  1490 \medskip
  1490 
       
  1491 
  1491 
  1492 We will use a simple special case of the above 
  1492 We will use a simple special case of the above 
  1493 construction to define tensor products 
  1493 construction to define tensor products 
  1494 of modules.
  1494 of modules.
  1495 Let $\cM_1$ and $\cM_2$ be modules for an $n$-category $\cC$.
  1495 Let $\cM_1$ and $\cM_2$ be modules for an $n$-category $\cC$.
  1496 (If $k=1$ and our manifolds are oriented, then one should be 
  1496 (If $k=1$ and our manifolds are oriented, then one should be 
  1497 a left module and the other a right module.)
  1497 a left module and the other a right module.)
  1498 Choose a 1-ball $J$, and label the two boundary points of $J$ by $\cM_1$ and $\cM_2$.
  1498 Choose a 1-ball $J$, and label the two boundary points of $J$ by $\cM_1$ and $\cM_2$.
  1499 Define the tensor product $\cM_1 \tensor \cM_2$ to be the 
  1499 Define the tensor product $\cM_1 \tensor \cM_2$ to be the 
  1500 $n{-}1$-category $\cT(J, \{\cM_1, \cM_2\})$.
  1500 $n{-}1$-category associated as above to $J$ with its boundary labeled by $\cM_1$ and $\cM_2$.
  1501 This of course depends (functorially)
  1501 This of course depends (functorially)
  1502 on the choice of 1-ball $J$.
  1502 on the choice of 1-ball $J$.
  1503 
  1503 
  1504 We will define a more general self tensor product (categorified coend) below.
  1504 We will define a more general self tensor product (categorified coend) below.
  1505 
  1505