blob1.tex
changeset 26 88ec5e070f25
parent 25 48919b6f51b8
child 28 f844cffa5c03
equal deleted inserted replaced
25:48919b6f51b8 26:88ec5e070f25
   981 commutes.
   981 commutes.
   982 \end{itemize}
   982 \end{itemize}
   983 \end{defn}
   983 \end{defn}
   984 
   984 
   985 \begin{rem}
   985 \begin{rem}
   986 We can restrict the evaluation map to $0$-chains, and see that $J \mapsto A(J)$ and $(\phi:J \to J') \mapsto \ev_{J \to J'}(\phi, -)$ together
   986 We can restrict the evaluation map to $0$-chains, and see that $J \mapsto A(J)$ and $(\phi:J \to J') \mapsto \ev_{J \to J'}(\phi, \bullet)$ together
   987 constitute a functor from the category of intervals and diffeomorphisms between them to the category of complexes of vector spaces.
   987 constitute a functor from the category of intervals and diffeomorphisms between them to the category of complexes of vector spaces.
   988 Further, once this functor has been specified, we only need to know how the evaluation map acts when $J = J'$.
   988 Further, once this functor has been specified, we only need to know how the evaluation map acts when $J = J'$.
   989 \end{rem}
   989 \end{rem}
   990 
   990 
   991 %% if we do things separately, we should say this:
   991 %% if we do things separately, we should say this:
  1008 The action of diffeomorphisms (and of $k$-parameter families of diffeomorphisms) ignores the boundary conditions.
  1008 The action of diffeomorphisms (and of $k$-parameter families of diffeomorphisms) ignores the boundary conditions.
  1009 \todo{we presumably need to say something about $\Id_c \in A(J, c, c)$.}
  1009 \todo{we presumably need to say something about $\Id_c \in A(J, c, c)$.}
  1010 
  1010 
  1011 At this point we can give two motivating examples. The first is `chains of maps to $M$' for some fixed target space $M$.
  1011 At this point we can give two motivating examples. The first is `chains of maps to $M$' for some fixed target space $M$.
  1012 \begin{defn}
  1012 \begin{defn}
  1013 Define the topological $A_\infty$ category $C_*(\Maps(- \to M))$ by
  1013 Define the topological $A_\infty$ category $C_*(\Maps(\bullet \to M))$ by
  1014 \begin{enumerate}
  1014 \begin{enumerate}
  1015 \item $A(J) = C_*(\Maps(J \to M))$, singular chains on the space of smooth maps from $J$ to $M$,
  1015 \item $A(J) = C_*(\Maps(J \to M))$, singular chains on the space of smooth maps from $J$ to $M$,
  1016 \item $\ev_{J,J'} : \CD{J \to J'} \tensor A(J) \to A(J')$ is the composition $\CD{J \to J'} \tensor C_*(\Maps(J \to M)) \to C_*(\Diff(J \to J') \times \Maps(J \to M)) \to C_*(\Maps(J' \to M))$, where the first map is the product of singular chains, and the second is precomposition by the inverse of a diffeomorphism\todo{inverse, really?!},
  1016 \item $\ev_{J,J'} : \CD{J \to J'} \tensor A(J) \to A(J')$ is the composition
       
  1017 \begin{align*}
       
  1018 \CD{J \to J'} \tensor C_*(\Maps(J \to M)) & \to C_*(\Diff(J \to J') \times \Maps(J \to M)) \\ & \to C_*(\Maps(J' \to M)),
       
  1019 \end{align*}
       
  1020 where the first map is the product of singular chains, and the second is precomposition by the inverse of a diffeomorphism\todo{inverse, really?!},
  1017 \item $\gl_{J,J'} : A(J) \tensor A(J')$ takes the product of singular chains, then glues maps to $M$ together.
  1021 \item $\gl_{J,J'} : A(J) \tensor A(J')$ takes the product of singular chains, then glues maps to $M$ together.
  1018 \end{enumerate}
  1022 \end{enumerate}
  1019 The associativity conditions are trivially satisfied.
  1023 The associativity conditions are trivially satisfied.
  1020 \end{defn}
  1024 \end{defn}
  1021 
  1025 
  1026 The definition of a module follows closely the definition of an algebra or category.
  1030 The definition of a module follows closely the definition of an algebra or category.
  1027 \begin{defn}
  1031 \begin{defn}
  1028 \label{defn:topological-module}%
  1032 \label{defn:topological-module}%
  1029 A topological $A_\infty$-(left-)module $M$ over a topological $A_\infty$ category $A$ consists of the data
  1033 A topological $A_\infty$-(left-)module $M$ over a topological $A_\infty$ category $A$ consists of the data
  1030 \begin{enumerate}
  1034 \begin{enumerate}
  1031 \item a functor $K \mapsto M(K)$ from $1$-manifolds diffeomorphic to the standard interval, with a marked point on a boundary, to complexes of vector spaces,
  1035 \item a functor $K \mapsto M(K)$ from $1$-manifolds diffeomorphic to the standard interval, with a marked point on a upper boundary, to complexes of vector spaces,
  1032 \item along with an `evaluation' map $\ev_K : \CD{K} \tensor M(K) \to M(K)$
  1036 \item along with an `evaluation' map $\ev_K : \CD{K} \tensor M(K) \to M(K)$
  1033 \item and for each interval $J$ and interval $K$ a marked point on the right boundary, a gluing map
  1037 \item and for each interval $J$ and interval $K$ a marked point on the upper boundary, a gluing map
  1034 $\gl_{J,K} : A(J) \tensor M(K) \to M(J \cup K)$
  1038 $\gl_{J,K} : A(J) \tensor M(K) \to M(J \cup K)$
  1035 \end{enumerate}
  1039 \end{enumerate}
  1036 satisfying the obvious conditions analogous to those in Definition \ref{defn:topological-algebra}.
  1040 satisfying the obvious conditions analogous to those in Definition \ref{defn:topological-algebra}.
  1037 \end{defn}
  1041 \end{defn}
       
  1042 
       
  1043 Any manifold $X$ with $\bdy X = Y$ (or indeed just with $Y$ a codimension $0$-submanifold of $\bdy X$) becomes a topological $A_\infty$ module over
       
  1044 $\bc_*(Y)$, the topological $A_\infty$ category described above. For each interval $K$, we have $M(K) = \bc_*((Y \times K) \cup_Y X)$.
       
  1045 (Here we glue $Y \times pt$ to $X$, where $pt$ is the marked point of $K$.) Again, the evaluation and gluing maps come directly from Properties
       
  1046 \ref{property:evaluation} and \ref{property:gluing-map} respectively.
  1038 
  1047 
  1039 \todo{Bimodules, and gluing}
  1048 \todo{Bimodules, and gluing}
  1040 
  1049 
  1041 \todo{the motivating example $C_*(\maps(X, M))$}
  1050 \todo{the motivating example $C_*(\maps(X, M))$}
  1042 
  1051 
  1057 \end{defn}
  1066 \end{defn}
  1058 
  1067 
  1059 Give an `algebraic' $A_\infty$ category $(A, m_k)$, we can construct a topological $A_\infty$-category, which we call $\bc_*^A$. You should
  1068 Give an `algebraic' $A_\infty$ category $(A, m_k)$, we can construct a topological $A_\infty$-category, which we call $\bc_*^A$. You should
  1060 think of this as a generalisation of the blob complex, although the construction we give will \emph{not} specialise to exactly the usual definition
  1069 think of this as a generalisation of the blob complex, although the construction we give will \emph{not} specialise to exactly the usual definition
  1061 in the case the $A$ is actually an associative category.
  1070 in the case the $A$ is actually an associative category.
       
  1071 
       
  1072 We'll first define $\cT_{k,n}$ to be the set of planar forests consisting of $n-k$ trees, with a total of $n$ leaves. Thus
       
  1073 \todo{$\cT_{0,n}$ has 1 element, with $n$ vertical lines, $\cT_{1,n}$ has $n-1$ elements, each with a single trivalent vertex, $\cT_{2,n}$ etc...}
       
  1074 \begin{align*}
       
  1075 \end{align*}
       
  1076 
  1062 \begin{defn}
  1077 \begin{defn}
       
  1078 The topological $A_\infty$ category $\bc_*^A$ is doubly graded, by `blob degree' and `internal degree'. We'll write $\bc_k^A$ for the blob degree $k$ piece.
       
  1079 The homological degree of an element $a \in \bc_*^A(J)$
       
  1080 is the sum of the blob degree and the internal degree.
       
  1081 
       
  1082 We first define $\bc_0^A(J)$ as a vector space by
       
  1083 \begin{equation*}
       
  1084 \bc_0^A(J) = \DirectSum_{\substack{\{J_i\}_{i=1}^n \\ \mathclap{\bigcup_i J_i = J}}} \left(\{J_i\}, \Tensor_{i=1}^n (\CD{J_i \to I} \tensor A) \right).
       
  1085 \end{equation*}
       
  1086 (That is, for each division of $J$ into finitely many subintervals,
       
  1087 we have the tensor product of chains of diffeomorphisms from each subinterval to the standard interval,
       
  1088 and a copy of $A$ for each subinterval.)
       
  1089 The internal degree of an element $(f_1 \tensor a_1, \ldots, f_n \tensor a_n)$ is the sum of the dimensions of the singular chains
       
  1090 plus the sum of the homological degrees of the elements of $A$.
       
  1091 The differential is defined just by the graded Leibniz rule and the differentials on $\CD{J_i \to I}$ and on $A$.
       
  1092 
       
  1093 Next,
       
  1094 \begin{equation*}
       
  1095 \bc_1^A(J) = \DirectSum_{\substack{\{J_i\}_{i=1}^n \\ \mathclap{\bigcup_i J_i = J}}} \DirectSum_{T \in \cT_{1,n}} \left(\{J_i\}, T, \Tensor_{i=1}^n (\CD{J_i \to I} \tensor A) \right).
       
  1096 \end{equation*}
  1063 \end{defn}
  1097 \end{defn}
       
  1098 
       
  1099 \newcommand{\tm}{\widetilde{m}}
       
  1100 \newcommand{\ttm}{\widetilde{\widetilde{m}}}
       
  1101 
       
  1102 Define $\ttm_k$ by
       
  1103 \begin{align*}
       
  1104 \ttm_k(a_1 \tensor \cdots \tensor a_k) & = m_k(a_1 \tensor \cdots \tensor a_k) \\
       
  1105 \ttm_k(a_1 \tensor \cdots \tensor a_{k-1} \tensor z) & = z \tensor \tm_{k-1}(a_1 \tensor \cdots \tensor a_{k-1}) \\
       
  1106 \intertext{and}
       
  1107 \ttm_k(a_1 \tensor \cdots \tensor a_{k-2} \tensor z \tensor a_k) & = z \tensor \tm_{k-2}(a_1 \tensor \cdots \tensor a_{k-2}) \tensor a_k.
       
  1108 \end{align*}
       
  1109 
       
  1110 Let $\tm_1(a) = a$.
       
  1111 
       
  1112 Then define
       
  1113 \begin{align*}
       
  1114 \bdy(\tm_k(a_1 \tensor \cdots \tensor a_k)) & = \sum_{j=1}^{k} \tm_k(a_1 \tensor \cdots \tensor \bdy a_j \tensor \cdots \tensor a_k) + \\
       
  1115    & z \perp \sum_{q=2}^{k-1} \sum_{p=1}^{k-q+2} \ttm_{k-q+1}(a_1 \tensor \cdots a_{p-1} \tensor \ttm_q(a_p \tensor \cdots \tensor a_{p+q-1}) \tensor a_{p+q} \tensor \cdots \tensor a_{k+1}).
       
  1116 \end{align*}
       
  1117 where here $a_{k+1}$ is just notation for $z$.
       
  1118 \todo{err... here I mean $z \perp z \tensor x = x$...}
       
  1119 \todo{actually, if you let $q$ start from 1 you don't need the first term}
       
  1120 
       
  1121 \begin{align*}
       
  1122 \bdy(\tm_2(a \tensor b)) & = (\tm_2(\bdy a \tensor b) + \tm_2(a \tensor \bdy b)) + \\
       
  1123                          & \qquad + a \tensor b + \\
       
  1124                          & \qquad + m_2(a \tensor b) \\
       
  1125 \bdy(\tm_3(a \tensor b \tensor c)) & = (\tm_3(\bdy a \tensor b \tensor c) + \tm_3(a \tensor \bdy b \tensor c) + \tm_3(a \tensor b \tensor \bdy c)) + \\
       
  1126                                    & + (\tm_2(a \tensor b) \tensor c + a \tensor \tm_2(b \tensor c)) + \\
       
  1127                                    & + (\tm_2(m_2(a \tensor b) \tensor c) + \tm_2(a, m_2(b \tensor c)) + m_3(a \tensor b \tensor c)) \\
       
  1128 \bdy(\tm_4(a \tensor b \tensor c \tensor d)) & = (\tm_4(\bdy a \tensor b \tensor c \tensor d) + \cdots + \tm_4(a \tensor b \tensor c \tensor \bdy d)) + \\
       
  1129                                              & + (\tm_3(a \tensor b \tensor c) \tensor d + \tm_2(a \tensor b) \tensor \tm_2(c \tensor d) + a \tensor \tm_3(b \tensor c \tensor d)) + \\
       
  1130                                              & + (\tm_3(m_2(a \tensor b) \tensor c \tensor d) + \tm_3(a \tensor m_2(b \tensor c) \tensor d) + \tm_3(a \tensor b \tensor m_2(c \tensor d)) + \\
       
  1131                                              & + \tm_2(m_3(a \tensor b \tensor c) \tensor d) + \tm_2(a \tensor m_3(b \tensor c \tensor d)) + m_4(a \tensor b \tensor c \tensor d)) \\
       
  1132 %d(\tm_k(x_1 \tensor \cdots \tensor x_k)) & = \sum_{i=1}^k (-1)^{\sum_{j=1}^{i-1} \deg(x_j)} \tm_k(x_1 \tensor \cdots \tensor d x_i \tensor \cdots \tensor x_k) + \\
       
  1133 %                                         & \qquad + + \\
       
  1134 %                                         & \qquad +
       
  1135 \end{align*}
  1064 
  1136 
  1065 \nn{Need to let the input $n$-category $C$ be a graded thing (e.g. DG
  1137 \nn{Need to let the input $n$-category $C$ be a graded thing (e.g. DG
  1066 $n$-category or $A_\infty$ $n$-category). DG $n$-category case is pretty
  1138 $n$-category or $A_\infty$ $n$-category). DG $n$-category case is pretty
  1067 easy, I think, so maybe it should be done earlier??}
  1139 easy, I think, so maybe it should be done earlier??}
  1068 
  1140