text/ncat.tex
changeset 330 8dad3dc7023b
parent 328 bc22926d4fb0
child 331 956f373f6ff6
equal deleted inserted replaced
328:bc22926d4fb0 330:8dad3dc7023b
  1267 \nn{surely $\cbar'$ can't be empy: we don't allow $D_1$ to be empty.}
  1267 \nn{surely $\cbar'$ can't be empy: we don't allow $D_1$ to be empty.}
  1268 Translating from the boundary map for $(\cM_\cC\ot {_\cC\cN})^*$  appearing in Equation \eqref{eq:tensor-product-boundary},
  1268 Translating from the boundary map for $(\cM_\cC\ot {_\cC\cN})^*$  appearing in Equation \eqref{eq:tensor-product-boundary},
  1269 we have
  1269 we have
  1270 \begin{eqnarray*}
  1270 \begin{eqnarray*}
  1271 	(\bd g)(\olD\ot x \ot \cbar) &=& \bd(g(\olD\ot x \ot \cbar)) + g(\olD\ot\bd(x\ot\cbar)) + \\
  1271 	(\bd g)(\olD\ot x \ot \cbar) &=& \bd(g(\olD\ot x \ot \cbar)) + g(\olD\ot\bd(x\ot\cbar)) + \\
  1272 	& & \;\; g((\bd_+\olD)\ot x\ot\cbar) + \gl(g((\bd_0\olD)\ot x\ot\cbar')\ot\cbar'') .
  1272 	& & \;\; g((\bd_+\olD)\ot x\ot\cbar) + \gl''(g((\bd_0\olD)\ot \gl'(x\ot\cbar'))\ot\cbar'') .
  1273 \end{eqnarray*}
  1273 \end{eqnarray*}
  1274 \nn{put in signs, rearrange terms to match order in previous formulas}
  1274 \nn{put in signs, rearrange terms to match order in previous formulas}
  1275 Here $\gl$ denotes the module action in $\cY_\cC$.
  1275 Here $\gl''$ denotes the module action in $\cY_\cC$
       
  1276 and $\gl'$ denotes the module action in $\cX_\cC$.
  1276 This completes the definition of $\hom_\cC(\cX_\cC \to \cY_\cC)$.
  1277 This completes the definition of $\hom_\cC(\cX_\cC \to \cY_\cC)$.
  1277 
  1278 
  1278 Note that if $\bd g = 0$, then each 
  1279 Note that if $\bd g = 0$, then each 
  1279 \[
  1280 \[
  1280 	g(\olD\ot -) : \cX(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_{p-1}) \to \cY(I_1\cup\cdots\cup I_{p-1})
  1281 	g(\olD\ot -) : \cX(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_{p-1}) \to \cY(I_1\cup\cdots\cup I_{p-1})
  1307 Trivially, we have $(\bd g)(\olD\ot x \ot \cbar) = 0$ if $\deg(\olD) > 1$.
  1308 Trivially, we have $(\bd g)(\olD\ot x \ot \cbar) = 0$ if $\deg(\olD) > 1$.
  1308 If $\deg(\olD) = 1$, $(\bd g) = 0$ is equivalent to the fact that $h$ commutes with gluing.
  1309 If $\deg(\olD) = 1$, $(\bd g) = 0$ is equivalent to the fact that $h$ commutes with gluing.
  1309 If $\deg(\olD) = 0$, $(\bd g) = 0$ is equivalent to the fact 
  1310 If $\deg(\olD) = 0$, $(\bd g) = 0$ is equivalent to the fact 
  1310 that each $h_K$ is a chain map.
  1311 that each $h_K$ is a chain map.
  1311 
  1312 
       
  1313 We can think of a general closed element $g\in \hom_\cC(\cX_\cC \to \cY_\cC)$
       
  1314 as a collection of chain maps which commute with the module action (gluing) up to coherent homotopy.
       
  1315 \nn{ideally should give explicit examples of this in low degrees, 
       
  1316 but skip that for now.}
       
  1317 \nn{should also say something about composition of morphisms; well-defined up to homotopy, or maybe
       
  1318 should make some arbitrary choice}
  1312 \medskip
  1319 \medskip
  1313 
  1320 
  1314 Given $_\cC\cZ$ and  $g: \cX_\cC \to \cY_\cC$ with $\bd g = 0$ as above, we next define a chain map
  1321 Given $_\cC\cZ$ and  $g: \cX_\cC \to \cY_\cC$ with $\bd g = 0$ as above, we next define a chain map
  1315 \[
  1322 \[
  1316 	g\ot\id : \cX_\cC \ot {}_\cC\cZ \to \cY_\cC \ot {}_\cC\cZ .
  1323 	g\ot\id : \cX_\cC \ot {}_\cC\cZ \to \cY_\cC \ot {}_\cC\cZ .
  1317 \]
  1324 \]
  1318 \nn{this is fairly straightforward, but the details are messy enough that I'm inclined
  1325 
  1319 to postpone writing it up, in the hopes that I'll think of a better way to organize things.}
  1326 \nn{not sure whether to do low degree examples or try to state the general case; ideally both,
  1320 
  1327 but maybe just low degrees for now.}
  1321 
       
  1322 
       
  1323 
       
  1324 \medskip
       
  1325 
       
  1326 
       
  1327 \nn{do we need to say anything about composing morphisms of modules?}
       
  1328 
       
  1329 \nn{should we define functors between $n$-cats in a similar way?}
       
  1330 
  1328 
  1331 
  1329 
  1332 \nn{...}
  1330 \nn{...}
  1333 
  1331 
       
  1332 
       
  1333 
       
  1334 
       
  1335 \medskip
       
  1336 
       
  1337 
       
  1338 \nn{should we define functors between $n$-cats in a similar way?  i.e.\ natural transformations
       
  1339 of the $\cC$ functors which commute with gluing only up to higher morphisms?
       
  1340 perhaps worth having both definitions available.
       
  1341 certainly the simple kind (strictly commute with gluing) arise in nature.}
  1334 
  1342 
  1335 
  1343 
  1336 
  1344 
  1337 
  1345 
  1338 
  1346