text/ncat.tex
changeset 425 8f488e576afd
parent 424 6ebf92d2ccef
child 426 8aca80203f9d
equal deleted inserted replaced
424:6ebf92d2ccef 425:8f488e576afd
   669 (restriction maps, gluing, product morphisms, action of homeomorphisms) is usually obvious.
   669 (restriction maps, gluing, product morphisms, action of homeomorphisms) is usually obvious.
   670 
   670 
   671 \begin{example}[Maps to a space]
   671 \begin{example}[Maps to a space]
   672 \rm
   672 \rm
   673 \label{ex:maps-to-a-space}%
   673 \label{ex:maps-to-a-space}%
   674 Let $T$be a topological space.
   674 Let $T$ be a topological space.
   675 We define $\pi_{\leq n}(T)$, the fundamental $n$-category of $T$, as follows.
   675 We define $\pi_{\leq n}(T)$, the fundamental $n$-category of $T$, as follows.
   676 For $X$ a $k$-ball with $k < n$, define $\pi_{\leq n}(T)(X)$ to be the set of 
   676 For $X$ a $k$-ball with $k < n$, define $\pi_{\leq n}(T)(X)$ to be the set of 
   677 all continuous maps from $X$ to $T$.
   677 all continuous maps from $X$ to $T$.
   678 For $X$ an $n$-ball define $\pi_{\leq n}(T)(X)$ to be continuous maps from $X$ to $T$ modulo
   678 For $X$ an $n$-ball define $\pi_{\leq n}(T)(X)$ to be continuous maps from $X$ to $T$ modulo
   679 homotopies fixed on $\bd X$.
   679 homotopies fixed on $\bd X$.
   711 $h: X\times F\times I \to T$, then $a = \alpha(h)b$.
   711 $h: X\times F\times I \to T$, then $a = \alpha(h)b$.
   712 (In order for this to be well-defined we must choose $\alpha$ to be zero on degenerate simplices.
   712 (In order for this to be well-defined we must choose $\alpha$ to be zero on degenerate simplices.
   713 Alternatively, we could equip the balls with fundamental classes.)
   713 Alternatively, we could equip the balls with fundamental classes.)
   714 \end{example}
   714 \end{example}
   715 
   715 
   716 The next example is only intended to be illustrative, as we don't specify which definition of a ``traditional $n$-category" we intend.
   716 \begin{example}[$n$-categories from TQFTs]
   717 Further, most of these definitions don't even have an agreed-upon notion of ``strong duality", which we assume here.
   717 \rm
       
   718 \label{ex:ncats-from-tqfts}%
       
   719 Let $\cF$ be a TQFT in the sense of \S\ref{sec:fields}: an $n$-dimensional 
       
   720 system of fields (also denoted $\cF$) and local relations.
       
   721 Let $W$ be an $n{-}j$-manifold.
       
   722 Define the $j$-category $\cF(W)$ as follows.
       
   723 If $X$ is a $k$-ball with $k<j$, let $\cF(W)(X) \deq \cF(W\times X)$.
       
   724 If $X$ is a $j$-ball and $c\in \cl{\cF(W)}(\bd X)$, 
       
   725 let $\cF(W)(X; c) \deq A_\cF(W\times X; c)$.
       
   726 \end{example}
       
   727 
       
   728 The next example is only intended to be illustrative, as we don't specify 
       
   729 which definition of a ``traditional $n$-category" we intend.
       
   730 Further, most of these definitions don't even have an agreed-upon notion of 
       
   731 ``strong duality", which we assume here.
   718 \begin{example}[Traditional $n$-categories]
   732 \begin{example}[Traditional $n$-categories]
   719 \rm
   733 \rm
   720 \label{ex:traditional-n-categories}
   734 \label{ex:traditional-n-categories}
   721 Given a ``traditional $n$-category with strong duality" $C$
   735 Given a ``traditional $n$-category with strong duality" $C$
   722 define $\cC(X)$, for $X$ a $k$-ball with $k < n$,
   736 define $\cC(X)$, for $X$ a $k$-ball with $k < n$,
  1386 \medskip
  1400 \medskip
  1387 
  1401 
  1388 We now give some examples of modules over topological and $A_\infty$ $n$-categories.
  1402 We now give some examples of modules over topological and $A_\infty$ $n$-categories.
  1389 
  1403 
  1390 \begin{example}[Examples from TQFTs]
  1404 \begin{example}[Examples from TQFTs]
  1391 \nn{need to add corresponding ncat example}
  1405 \rm
       
  1406 Continuing Example \ref{ex:ncats-from-tqfts}, with $\cF$ a TQFT, $W$ an $n{-}j$-manifold,
       
  1407 and $\cF(W)$ the $j$-category associated to $W$.
       
  1408 Let $Y$ be an $(n{-}j{+}1)$-manifold with $\bd Y = W$.
       
  1409 Define a $\cF(W)$ module $\cF(Y)$ as follows.
       
  1410 If $M = (B, N)$ is a marked $k$-ball with $k<j$ let 
       
  1411 $\cF(Y)(M)\deq \cF((B\times W) \cup (N\times Y))$.
       
  1412 If $M = (B, N)$ is a marked $j$-ball and $c\in \cl{\cF(Y)}(\bd M)$ let
       
  1413 $\cF(Y)(M)\deq A_\cF((B\times W) \cup (N\times Y); c)$.
  1392 \end{example}
  1414 \end{example}
  1393 
  1415 
  1394 \begin{example}
  1416 \begin{example}
       
  1417 \rm
  1395 Suppose $S$ is a topological space, with a subspace $T$.
  1418 Suppose $S$ is a topological space, with a subspace $T$.
  1396 We can define a module $\pi_{\leq n}(S,T)$ so that on each marked $k$-ball $(B,N)$ 
  1419 We can define a module $\pi_{\leq n}(S,T)$ so that on each marked $k$-ball $(B,N)$ 
  1397 for $k<n$ the set $\pi_{\leq n}(S,T)(B,N)$ consists of all continuous maps of pairs 
  1420 for $k<n$ the set $\pi_{\leq n}(S,T)(B,N)$ consists of all continuous maps of pairs 
  1398 $(B,N) \to (S,T)$ and on each marked $n$-ball $(B,N)$ it consists of all 
  1421 $(B,N) \to (S,T)$ and on each marked $n$-ball $(B,N)$ it consists of all 
  1399 such maps modulo homotopies fixed on $\bdy B \setminus N$.
  1422 such maps modulo homotopies fixed on $\bdy B \setminus N$.