blob1.tex
changeset 47 939a4a5b1d80
parent 45 0047a1211c3b
child 48 b7ade62bea27
equal deleted inserted replaced
46:0ffcbbd8019c 47:939a4a5b1d80
  1412 \bigskip
  1412 \bigskip
  1413 
  1413 
  1414 \nn{need to define/recall def of (self) tensor product over an $A_\infty$ category}
  1414 \nn{need to define/recall def of (self) tensor product over an $A_\infty$ category}
  1415 
  1415 
  1416 
  1416 
       
  1417 \section{Commutative algebras as $n$-categories}
       
  1418 
       
  1419 \nn{this should probably not be a section by itself.  i'm just trying to write down the outline 
       
  1420 while it's still fresh in my mind.}
       
  1421 
       
  1422 If $C$ is a commutative algebra it
       
  1423 can (and will) also be thought of as an $n$-category with trivial $j$-morphisms for
       
  1424 $j<n$ and $n$-morphisms are $C$. 
       
  1425 The goal of this \nn{subsection?} is to compute
       
  1426 $\bc_*(M^n, C)$ for various commutative algebras $C$.
       
  1427 
       
  1428 Let $k[t]$ denote the ring of polynomials in $t$ with coefficients in $k$.
       
  1429 
       
  1430 Let $\Sigma^i(M)$ denote the $i$-th symmetric power of $M$, the configuration space of $i$
       
  1431 unlabeled points in $M$.
       
  1432 Note that $\Sigma^i(M)$ is a point.
       
  1433 Let $\Sigma^\infty(M) = \coprod_{i=0}^\infty \Sigma^i(M)$.
       
  1434 
       
  1435 Let $C_*(X)$ denote the singular chain complex of the space $X$.
       
  1436 
       
  1437 \begin{prop}
       
  1438 $\bc_*(M^n, k[t])$ is homotopy equivalent to $C_*(\Sigma^\infty(M))$.
       
  1439 \end{prop}
       
  1440 
       
  1441 \begin{proof}
       
  1442 To define the chain maps between the two complexes we will use the following lemma:
       
  1443 
       
  1444 \begin{lemma}
       
  1445 Let $A_*$ and $B_*$ be chain complexes, and assume $A_*$ is equipped with
       
  1446 a basis (e.g.\ blob diagrams or singular simplices).
       
  1447 For each basis element $c \in A_*$ assume given a contractible subcomplex $R(c)_* \sub B_*$
       
  1448 such that $R(c') \sub R(c)$ whenever $c'$ is a basis element which is part of $\bd c$.
       
  1449 Then the complex of chain maps (and (iterated) homotopies) $f:A_*\to B_*$ such that
       
  1450 $f(c) \in R(c)_*$ for all $c$ is contractible (and in particular non-empty).
       
  1451 \end{lemma}
       
  1452 
       
  1453 \begin{proof}
       
  1454 \nn{easy, but should probably write the details eventually}
       
  1455 \end{proof}
       
  1456 
       
  1457 \nn{...}
       
  1458 
       
  1459 \end{proof}
       
  1460 
       
  1461 
       
  1462 
       
  1463 
  1417 
  1464 
  1418 
  1465 
  1419 \appendix
  1466 \appendix
  1420 
  1467 
  1421 \section{Families of Diffeomorphisms}  \label{sec:localising}
  1468 \section{Families of Diffeomorphisms}  \label{sec:localising}
  1604 
  1651 
  1605 \nn{this completes proof}
  1652 \nn{this completes proof}
  1606 
  1653 
  1607 \input{text/explicit.tex}
  1654 \input{text/explicit.tex}
  1608 
  1655 
       
  1656 
  1609 % ----------------------------------------------------------------
  1657 % ----------------------------------------------------------------
  1610 %\newcommand{\urlprefix}{}
  1658 %\newcommand{\urlprefix}{}
  1611 \bibliographystyle{plain}
  1659 \bibliographystyle{plain}
  1612 %Included for winedt:
  1660 %Included for winedt:
  1613 %input "bibliography/bibliography.bib"
  1661 %input "bibliography/bibliography.bib"
  1614 \bibliography{bibliography/bibliography}
  1662 \bibliography{bibliography/bibliography}
  1615 % ----------------------------------------------------------------
  1663 % ----------------------------------------------------------------
  1616 
  1664 
  1617 This paper is available online at \arxiv{?????}, and at
  1665 This paper is available online at \arxiv{?????}, and at
  1618 \url{http://tqft.net/blobs}.
  1666 \url{http://tqft.net/blobs},
       
  1667 and at \url{http://canyon23.net/math/}.
  1619 
  1668 
  1620 % A GTART necessity:
  1669 % A GTART necessity:
  1621 % \Addresses
  1670 % \Addresses
  1622 % ----------------------------------------------------------------
  1671 % ----------------------------------------------------------------
  1623 \end{document}
  1672 \end{document}