text/a_inf_blob.tex
changeset 291 9b8b474e272c
parent 286 ff867bfc8e9c
child 303 2252c53bd449
equal deleted inserted replaced
290:9bb7d314c694 291:9b8b474e272c
    19 
    19 
    20 \input{text/smallblobs}
    20 \input{text/smallblobs}
    21 
    21 
    22 \subsection{A product formula}
    22 \subsection{A product formula}
    23 
    23 
    24 Let $M^n = Y^k\times F^{n-k}$.  
       
    25 Let $C$ be a plain $n$-category.
       
    26 Let $\cF$ be the $A_\infty$ $k$-category which assigns to a $k$-ball
       
    27 $X$ the old-fashioned blob complex $\bc_*(X\times F)$.
       
    28 
       
    29 \begin{thm} \label{product_thm}
    24 \begin{thm} \label{product_thm}
    30 The old-fashioned blob complex $\bc_*^C(Y\times F)$ is homotopy equivalent to the
    25 Given a topological $n$-category $C$ and a $n-k$-manifold $F$, recall from Example \ref{ex:blob-complexes-of-balls} that there is an  $A_\infty$ $k$-category $C^{\times F}$ defined by
    31 new-fangled blob complex $\bc_*^\cF(Y)$.
    26 \begin{equation*}
       
    27 C^{\times F}(B) = \cB_*(B \times F, C).
       
    28 \end{equation*}
       
    29 Now, given a $k$-manifold $Y$, there is a homotopy equivalence between the `old-fashioned' blob complex for $Y \times F$ with coefficients in $C$ and the `new-fangled' (i.e. homotopy colimit) blob complex for $Y$ with coefficients in $C^{\times F}$:
       
    30 \begin{align*}
       
    31 \cB_*(Y \times F, C) & \htpy \cB_*(Y, C^{\times F})
       
    32 \end{align*}
    32 \end{thm}
    33 \end{thm}
    33 
    34 
       
    35 \begin{question}
       
    36 Is it possible to compute the blob homology of a non-trivial bundle in terms of the blob homology of its fiber?
       
    37 \end{question}
    34 
    38 
    35 
    39 
    36 \begin{proof}[Proof of Theorem \ref{product_thm}]
    40 \begin{proof}[Proof of Theorem \ref{product_thm}]
    37 We will use the concrete description of the colimit from Subsection \ref{ss:ncat_fields}.
    41 We will use the concrete description of the colimit from Subsection \ref{ss:ncat_fields}.
    38 
    42 
   340 
   344 
   341 
   345 
   342 \end{proof}
   346 \end{proof}
   343 
   347 
   344 \nn{maybe should also mention version where we enrich over
   348 \nn{maybe should also mention version where we enrich over
   345 spaces rather than chain complexes; should comment on Lurie's (and others') similar result
   349 spaces rather than chain complexes; should comment on Lurie's \cite{0911.0018} (and others') similar result
   346 for the $E_\infty$ case, and mention that our version does not require 
   350 for the $E_\infty$ case, and mention that our version does not require 
   347 any connectivity assumptions}
   351 any connectivity assumptions}
   348 
   352 
   349 \medskip
   353 \medskip
   350 \hrule
   354 \hrule