text/ncat.tex
changeset 324 a20e2318cbb0
parent 319 121c580d5ef7
child 328 bc22926d4fb0
equal deleted inserted replaced
323:6cc92b273d44 324:a20e2318cbb0
  1042 
  1042 
  1043 \begin{example}
  1043 \begin{example}
  1044 Suppose $S$ is a topological space, with a subspace $T$. We can define a module $\pi_{\leq n}(S,T)$ so that on each marked $k$-ball $(B,N)$ for $k<n$ the set $\pi_{\leq n}(S,T)(B,N)$ consists of all continuous maps of pairs $(B,N) \to (S,T)$ and on each marked $n$-ball $(B,N)$ it consists of all such maps modulo homotopies fixed on $\bdy B \setminus N$. This is a module over the fundamental $n$-category $\pi_{\leq n}(S)$ of $S$, from Example \ref{ex:maps-to-a-space}. Modifications corresponding to Examples \ref{ex:maps-to-a-space-with-a-fiber} and \ref{ex:linearized-maps-to-a-space} are also possible, and there is an $A_\infty$ version analogous to Example \ref{ex:chains-of-maps-to-a-space} given by taking singular chains.
  1044 Suppose $S$ is a topological space, with a subspace $T$. We can define a module $\pi_{\leq n}(S,T)$ so that on each marked $k$-ball $(B,N)$ for $k<n$ the set $\pi_{\leq n}(S,T)(B,N)$ consists of all continuous maps of pairs $(B,N) \to (S,T)$ and on each marked $n$-ball $(B,N)$ it consists of all such maps modulo homotopies fixed on $\bdy B \setminus N$. This is a module over the fundamental $n$-category $\pi_{\leq n}(S)$ of $S$, from Example \ref{ex:maps-to-a-space}. Modifications corresponding to Examples \ref{ex:maps-to-a-space-with-a-fiber} and \ref{ex:linearized-maps-to-a-space} are also possible, and there is an $A_\infty$ version analogous to Example \ref{ex:chains-of-maps-to-a-space} given by taking singular chains.
  1045 \end{example}
  1045 \end{example}
  1046 
  1046 
  1047 \subsection{Modules as boundary labels}
  1047 \subsection{Modules as boundary labels (colimits for decorated manifolds)}
  1048 \label{moddecss}
  1048 \label{moddecss}
  1049 
  1049 
  1050 Fix a topological $n$-category or $A_\infty$ $n$-category  $\cC$. Let $W$ be a $k$-manifold ($k\le n$),
  1050 Fix a topological $n$-category or $A_\infty$ $n$-category  $\cC$. Let $W$ be a $k$-manifold ($k\le n$),
  1051 let $\{Y_i\}$ be a collection of disjoint codimension 0 submanifolds of $\bd W$,
  1051 let $\{Y_i\}$ be a collection of disjoint codimension 0 submanifolds of $\bd W$,
  1052 and let $\cN = (\cN_i)$ be an assignment of a $\cC$ module $\cN_i$ to $Y_i$.
  1052 and let $\cN = (\cN_i)$ be an assignment of a $\cC$ module $\cN_i$ to $Y_i$.