text/appendixes/comparing_defs.tex
changeset 480 a26808b5db66
parent 477 86c8e2129355
child 481 7caafccef7e8
equal deleted inserted replaced
479:cfad13b6b1e5 480:a26808b5db66
   209 In this section, we make contact between the usual definition of an $A_\infty$ category 
   209 In this section, we make contact between the usual definition of an $A_\infty$ category 
   210 and our definition of a topological $A_\infty$ $1$-category, from \S \ref{ss:n-cat-def}.
   210 and our definition of a topological $A_\infty$ $1$-category, from \S \ref{ss:n-cat-def}.
   211 
   211 
   212 \medskip
   212 \medskip
   213 
   213 
   214 Given a topological $A_\infty$ $1$-category $\cC$, we define an ``$m_k$-style 
   214 Given a topological $A_\infty$ $1$-category $\cC$, we define an ``$m_k$-style" 
   215 $A_\infty$ $1$-category $A$ as follows.
   215 $A_\infty$ $1$-category $A$ as follows.
   216 The objects of $A$ are $\cC(pt)$.
   216 The objects of $A$ are $\cC(pt)$.
   217 The morphisms of $A$, from $x$ to $y$, are $\cC(I; x, y)$
   217 The morphisms of $A$, from $x$ to $y$, are $\cC(I; x, y)$
   218 ($\cC$ applied to the standard interval with boundary labeled by $x$ and $y$).
   218 ($\cC$ applied to the standard interval with boundary labeled by $x$ and $y$).
   219 For simplicity we will now assume there is only one object and suppress it from the notation.
   219 For simplicity we will now assume there is only one object and suppress it from the notation.
   231 an algebra $A$ for the $A_\infty$ operad.
   231 an algebra $A$ for the $A_\infty$ operad.
   232 (For simplicity, we are assuming our $A_\infty$ 1-category has only one object.)
   232 (For simplicity, we are assuming our $A_\infty$ 1-category has only one object.)
   233 We are free to choose any operad with contractible spaces, so we choose the operad
   233 We are free to choose any operad with contractible spaces, so we choose the operad
   234 whose $k$-th space is the space of decompositions of the standard interval $I$ into $k$
   234 whose $k$-th space is the space of decompositions of the standard interval $I$ into $k$
   235 parameterized copies of $I$.
   235 parameterized copies of $I$.
   236 Note in particular that when $k=1$ this implies a $\Homeo(I)$ action on $A$.
   236 Note in particular that when $k=1$ this implies a $C_*(\Homeo(I))$ action on $A$.
   237 (Compare with Example \ref{ex:e-n-alg} and preceding discussion.)
   237 (Compare with Example \ref{ex:e-n-alg} and the discussion which precedes it.)
   238 Given a non-standard interval $J$, we define $\cC(J)$ to be
   238 Given a non-standard interval $J$, we define $\cC(J)$ to be
   239 $(\Homeo(I\to J) \times A)/\Homeo(I\to I)$,
   239 $(\Homeo(I\to J) \times A)/\Homeo(I\to I)$,
   240 where $\beta \in \Homeo(I\to I)$ acts via $(f, a) \mapsto (f\circ \beta\inv, \beta_*(a))$.
   240 where $\beta \in \Homeo(I\to I)$ acts via $(f, a) \mapsto (f\circ \beta\inv, \beta_*(a))$.
   241 \nn{check this}
   241 \nn{check this}
       
   242 Note that $\cC(J) \cong A$ (non-canonically) for all intervals $J$.
   242 We define a $\Homeo(J)$ action on $\cC(J)$ via $g_*(f, a) = (g\circ f, a)$.
   243 We define a $\Homeo(J)$ action on $\cC(J)$ via $g_*(f, a) = (g\circ f, a)$.
   243 The $C_*(\Homeo(J))$ action is defined similarly.
   244 The $C_*(\Homeo(J))$ action is defined similarly.
   244 
   245 
   245 Let $J_1$ and $J_2$ be intervals.
   246 Let $J_1$ and $J_2$ be intervals.
   246 We must define a map $\cC(J_1)\ot\cC(J_2)\to\cC(J_1\cup J_2)$.
   247 We must define a map $\cC(J_1)\ot\cC(J_2)\to\cC(J_1\cup J_2)$.
   248 Let $(f_i, a_i)\in \cC(J_i)$.
   249 Let $(f_i, a_i)\in \cC(J_i)$.
   249 We have a parameterized decomposition of $I$ into two intervals given by
   250 We have a parameterized decomposition of $I$ into two intervals given by
   250 $g\inv \circ f_i$, $i=1,2$.
   251 $g\inv \circ f_i$, $i=1,2$.
   251 Corresponding to this decomposition the operad action gives a map $\mu: A\ot A\to A$.
   252 Corresponding to this decomposition the operad action gives a map $\mu: A\ot A\to A$.
   252 Define the gluing map to send $(f_1, a_1)\ot (f_2, a_2)$ to $(g, \mu(a_1\ot a_2))$.
   253 Define the gluing map to send $(f_1, a_1)\ot (f_2, a_2)$ to $(g, \mu(a_1\ot a_2))$.
       
   254 Operad associativity for $A$ implies that this gluing map is independent of the choice of
       
   255 $g$ and the choice of representative $(f_i, a_i)$.
   253 
   256 
   254 It is straightforward to verify the remaining axioms for a topological $A_\infty$ 1-category.
   257 It is straightforward to verify the remaining axioms for a topological $A_\infty$ 1-category.
   255 
   258 
   256 
   259 
   257 
   260