blob1.tex
changeset 22 ada83e7228eb
parent 21 b7812497643a
child 23 7b0a43bdd3c4
equal deleted inserted replaced
21:b7812497643a 22:ada83e7228eb
    52 \def\calc#1{\expandafter\def\csname c#1\endcsname{{\mathcal #1}}}
    52 \def\calc#1{\expandafter\def\csname c#1\endcsname{{\mathcal #1}}}
    53 \applytolist{calc}QWERTYUIOPLKJHGFDSAZXCVBNM;
    53 \applytolist{calc}QWERTYUIOPLKJHGFDSAZXCVBNM;
    54 
    54 
    55 % \DeclareMathOperator{\pr}{pr} etc.
    55 % \DeclareMathOperator{\pr}{pr} etc.
    56 \def\declaremathop#1{\expandafter\DeclareMathOperator\csname #1\endcsname{#1}}
    56 \def\declaremathop#1{\expandafter\DeclareMathOperator\csname #1\endcsname{#1}}
    57 \applytolist{declaremathop}{pr}{im}{id}{gl}{tr}{rot}{Eq}{obj}{mor}{ob}{Rep}{Tet}{cat}{Diff}{sign}{supp}{maps};
    57 \applytolist{declaremathop}{pr}{im}{id}{gl}{ev}{tr}{rot}{Eq}{obj}{mor}{ob}{Rep}{Tet}{cat}{Diff}{sign}{supp}{maps};
    58 
    58 
    59 
    59 
    60 
    60 
    61 %%%%%% end excerpt
    61 %%%%%% end excerpt
    62 
    62 
    76 \makeatother
    76 \makeatother
    77 
    77 
    78 
    78 
    79 \maketitle
    79 \maketitle
    80 
    80 
    81 \textbf{Draft version, do not distribute. \versioninfo}
    81 \textbf{Draft version, do not distribute.}
       
    82 
       
    83 \versioninfo
       
    84 
       
    85 \section*{Todo}
       
    86 
       
    87 \subsection*{What else?...}
       
    88 
       
    89 \begin{itemize}
       
    90 \item Derive Hochschild standard results from blob point of view?
       
    91 \item $n=2$ examples
       
    92 \item Kh
       
    93 \item dimension $n+1$ (generalized Deligne conjecture?)
       
    94 \item should be clear about PL vs Diff; probably PL is better
       
    95 (or maybe not)
       
    96 \item say what we mean by $n$-category, $A_\infty$ or $E_\infty$ $n$-category
       
    97 \item something about higher derived coend things (derived 2-coend, e.g.)
       
    98 \end{itemize}
       
    99 
    82 
   100 
    83 \section{Introduction}
   101 \section{Introduction}
    84 
   102 
    85 (motivation, summary/outline, etc.)
   103 (motivation, summary/outline, etc.)
    86 
   104 
    90 (2) want answer independent of handle decomp (i.e. don't
   108 (2) want answer independent of handle decomp (i.e. don't
    91 just go from coend to derived coend (e.g. Hochschild homology));
   109 just go from coend to derived coend (e.g. Hochschild homology));
    92 (3) ...
   110 (3) ...
    93 )
   111 )
    94 
   112 
       
   113 
       
   114 
       
   115 We then show that blob homology enjoys the following
       
   116 \ref{property:gluing} properties.
       
   117 
       
   118 \begin{property}[Functoriality]
       
   119 \label{property:functoriality}%
       
   120 Blob homology is functorial with respect to diffeomorphisms. That is, fixing an $n$-dimensional system of fields $\cF$ and local relations $\cU$, the association
       
   121 \begin{equation*}
       
   122 X \mapsto \bc_*^{\cF,\cU}(X)
       
   123 \end{equation*}
       
   124 is a functor from $n$-manifolds and diffeomorphisms between them to chain complexes and isomorphisms between them.
       
   125 \scott{Do we want to or need to weaken `isomorphisms' to `homotopy equivalences' or `quasi-isomorphisms'?}
       
   126 \end{property}
       
   127 
       
   128 \begin{property}[Disjoint union]
       
   129 \label{property:disjoint-union}
       
   130 The blob complex of a disjoint union is naturally the tensor product of the blob complexes.
       
   131 \begin{equation*}
       
   132 \bc_*(X_1 \sqcup X_2) \iso \bc_*(X_1) \tensor \bc_*(X_2)
       
   133 \end{equation*}
       
   134 \end{property}
       
   135 
       
   136 \begin{property}[A map for gluing]
       
   137 \label{property:gluing-map}%
       
   138 If $X_1$ and $X_2$ are $n$-manifolds, with $Y$ a codimension $0$-submanifold of $\bdy X_1$, and $Y^{\text{op}}$ a codimension $0$-submanifold of $\bdy X_2$,
       
   139 there is a chain map
       
   140 \begin{equation*}
       
   141 \gl_Y: \bc_*(X_1) \tensor \bc_*(X_2) \to \bc_*(X_1 \cup_Y X_2).
       
   142 \end{equation*}
       
   143 \end{property}
       
   144 
       
   145 \begin{property}[Contractibility]
       
   146 \label{property:contractibility}%
       
   147 \todo{Err, requires a splitting?}
       
   148 The blob complex for an $n$-category on an $n$-ball is quasi-isomorphic to its $0$-th homology.
       
   149 \begin{equation}
       
   150 \xymatrix{\bc_*^{\cC}(B^n) \ar[r]^{\iso}_{\text{qi}} & H_0(\bc_*^{\cC}(B^n))}
       
   151 \end{equation}
       
   152 \todo{Say that this is just the original $n$-category?}
       
   153 \end{property}
       
   154 
       
   155 \begin{property}[Skein modules]
       
   156 \label{property:skein-modules}%
       
   157 The $0$-th blob homology of $X$ is the usual skein module associated to $X$. (See \S \ref{sec:local-relations}.)
       
   158 \begin{equation*}
       
   159 H_0(\bc_*^{\cF,\cU}(X)) \iso A^{\cF,\cU}(X)
       
   160 \end{equation*}
       
   161 \end{property}
       
   162 
       
   163 \begin{property}[Hochschild homology when $X=S^1$]
       
   164 \label{property:hochschild}%
       
   165 The blob complex for a $1$-category $\cC$ on the circle is
       
   166 quasi-isomorphic to the Hochschild complex.
       
   167 \begin{equation*}
       
   168 \xymatrix{\bc_*^{\cC}(S^1) \ar[r]^{\iso}_{\text{qi}} & HC_*(\cC)}
       
   169 \end{equation*}
       
   170 \end{property}
       
   171 
       
   172 \begin{property}[Evaluation map]
       
   173 \label{property:evaluation}%
       
   174 There is an `evaluation' chain map
       
   175 \begin{equation*}
       
   176 \ev_X: \CD{X} \tensor \bc_*(X) \to \bc_*(X).
       
   177 \end{equation*}
       
   178 (Here $\CD{X}$ is the singular chain complex of the space of diffeomorphisms of $X$, fixed on $\bdy X$.)
       
   179 
       
   180 Restricted to $C_0(\Diff(X))$ this is just the action of diffeomorphisms described in Property \ref{property:functoriality}. Further, for
       
   181 any codimension $1$-submanifold $Y \subset X$ dividing $X$ into $X_1 \cup_Y X_2$, the following diagram
       
   182 (using the gluing maps described in Property \ref{property:gluing-map}) commutes.
       
   183 \begin{equation*}
       
   184 \xymatrix{
       
   185      \CD{X} \otimes \bc_*(X) \ar[r]^{\ev_X}    & \bc_*(X) \\
       
   186      \CD{X_1} \otimes \CD{X_2} \otimes \bc_*(X_1) \otimes \bc_*(X_2)
       
   187         \ar@/_4ex/[r]_{\ev_{X_1} \otimes \ev_{X_2}}  \ar[u]^{\gl^{\Diff}_Y \otimes \gl_Y}  &
       
   188             \bc_*(X_1) \otimes \bc_*(X_2) \ar[u]_{\gl_Y}
       
   189 }
       
   190 \end{equation*}
       
   191 \end{property}
       
   192 
       
   193 \begin{property}[Gluing formula]
       
   194 \label{property:gluing}%
       
   195 \mbox{}% <-- gets the indenting right
       
   196 \begin{itemize}
       
   197 \item For any $(n-1)$-manifold $Y$, the blob homology of $Y \times I$ is
       
   198 naturally an $A_\infty$ category. % We'll write $\bc_*(Y)$ for $\bc_*(Y \times I)$ below.
       
   199 
       
   200 \item For any $n$-manifold $X$, with $Y$ a codimension $0$-submanifold of its boundary, the blob homology of $X$ is naturally an
       
   201 $A_\infty$ module for $\bc_*(Y \times I)$.
       
   202 
       
   203 \item For any $n$-manifold $X$, with $Y \cup Y^{\text{op}}$ a codimension
       
   204 $0$-submanifold of its boundary, the blob homology of $X'$, obtained from
       
   205 $X$ by gluing along $Y$, is the $A_\infty$ self-tensor product of
       
   206 $\bc_*(X)$ as an $\bc_*(Y \times I)$-bimodule.
       
   207 \begin{equation*}
       
   208 \bc_*(X') \iso \bc_*(X) \Tensor^{A_\infty}_{\mathclap{\bc_*(Y \times I)}}
       
   209 \end{equation*}
       
   210 \todo{How do you write self tensor product?}
       
   211 \end{itemize}
       
   212 \end{property}
       
   213 
       
   214 Properties \ref{property:functoriality}, \ref{property:gluing-map} and \ref{property:skein-modules} will be immediate from the definition given in
       
   215 \S \ref{sec:blob-definition}, and we'll recall them at the appropriate points there. \todo{Make sure this gets done.}
       
   216 Properties \ref{property:disjoint-union} and \ref{property:contractibility} are established in \S \ref{sec:basic-properties}.
       
   217 Property \ref{property:hochschild} is established in \S \ref{sec:hochschild}, Property \ref{property:evaluation} in \S \ref{sec:evaluation},
       
   218 and Property \ref{property:gluing} in \S \ref{sec:gluing}.
       
   219 
    95 \section{Definitions}
   220 \section{Definitions}
    96 
   221 \label{sec:definitions}
    97 \subsection{Fields}
   222 
       
   223 \subsection{Systems of fields}
       
   224 \label{sec:fields}
    98 
   225 
    99 Fix a top dimension $n$.
   226 Fix a top dimension $n$.
   100 
   227 
   101 A {\it system of fields}
   228 A {\it system of fields}
   102 \nn{maybe should look for better name; but this is the name I use elsewhere}
   229 \nn{maybe should look for better name; but this is the name I use elsewhere}
   243 above tensor products.
   370 above tensor products.
   244 
   371 
   245 
   372 
   246 
   373 
   247 \subsection{Local relations}
   374 \subsection{Local relations}
       
   375 \label{sec:local-relations}
   248 
   376 
   249 Let $B^n$ denote the standard $n$-ball.
   377 Let $B^n$ denote the standard $n$-ball.
   250 A {\it local relation} is a collection subspaces $U(B^n; c) \sub \cC_l(B^n; c)$
   378 A {\it local relation} is a collection subspaces $U(B^n; c) \sub \cC_l(B^n; c)$
   251 (for all $c \in \cC(\bd B^n)$) satisfying the following (three?) properties.
   379 (for all $c \in \cC(\bd B^n)$) satisfying the following (three?) properties.
   252 
   380 
   280 The blob complex is in some sense the derived version of $A(Y; c)$.
   408 The blob complex is in some sense the derived version of $A(Y; c)$.
   281 
   409 
   282 
   410 
   283 
   411 
   284 \subsection{The blob complex}
   412 \subsection{The blob complex}
       
   413 \label{sec:blob-definition}
   285 
   414 
   286 Let $X$ be an $n$-manifold.
   415 Let $X$ be an $n$-manifold.
   287 Assume a fixed system of fields.
   416 Assume a fixed system of fields.
   288 In this section we will usually suppress boundary conditions on $X$ from the notation
   417 In this section we will usually suppress boundary conditions on $X$ from the notation
   289 (e.g. write $\cC_l(X)$ instead of $\cC_l(X; c)$).
   418 (e.g. write $\cC_l(X)$ instead of $\cC_l(X; c)$).
   439 relations to Chas-Sullivan string stuff}
   568 relations to Chas-Sullivan string stuff}
   440 
   569 
   441 
   570 
   442 
   571 
   443 \section{Basic properties of the blob complex}
   572 \section{Basic properties of the blob complex}
       
   573 \label{sec:basic-properties}
   444 
   574 
   445 \begin{prop} \label{disjunion}
   575 \begin{prop} \label{disjunion}
   446 There is a natural isomorphism $\bc_*(X \du Y) \cong \bc_*(X) \otimes \bc_*(Y)$.
   576 There is a natural isomorphism $\bc_*(X \du Y) \cong \bc_*(X) \otimes \bc_*(Y)$.
   447 \end{prop}
   577 \end{prop}
   448 \begin{proof}
   578 \begin{proof}
   534 \begin{prop}  \label{diff0prop}
   664 \begin{prop}  \label{diff0prop}
   535 There is an action of $\Diff(X)$ on $\bc_*(X)$.
   665 There is an action of $\Diff(X)$ on $\bc_*(X)$.
   536 \qed
   666 \qed
   537 \end{prop}
   667 \end{prop}
   538 
   668 
   539 The above will be greatly strengthened in Section \ref{diffsect}.
   669 The above will be greatly strengthened in Section \ref{sec:evaluation}.
   540 
   670 
   541 \medskip
   671 \medskip
   542 
   672 
   543 For the next proposition we will temporarily restore $n$-manifold boundary
   673 For the next proposition we will temporarily restore $n$-manifold boundary
   544 conditions to the notation.
   674 conditions to the notation.
   561 `Natural' means natural with respect to the actions of diffeomorphisms.
   691 `Natural' means natural with respect to the actions of diffeomorphisms.
   562 \qed
   692 \qed
   563 \end{prop}
   693 \end{prop}
   564 
   694 
   565 The above map is very far from being an isomorphism, even on homology.
   695 The above map is very far from being an isomorphism, even on homology.
   566 This will be fixed in Section \ref{gluesect} below.
   696 This will be fixed in Section \ref{sec:gluing} below.
   567 
   697 
   568 An instance of gluing we will encounter frequently below is where $X = X_1 \du X_2$
   698 An instance of gluing we will encounter frequently below is where $X = X_1 \du X_2$
   569 and $X\sgl = X_1 \cup_Y X_2$.
   699 and $X\sgl = X_1 \cup_Y X_2$.
   570 (Typically one of $X_1$ or $X_2$ is a disjoint union of balls.)
   700 (Typically one of $X_1$ or $X_2$ is a disjoint union of balls.)
   571 For $x_i \in \bc_*(X_i)$, we introduce the notation
   701 For $x_i \in \bc_*(X_i)$, we introduce the notation
   581 
   711 
   582 \section{Hochschild homology when $n=1$}
   712 \section{Hochschild homology when $n=1$}
   583 \label{sec:hochschild}
   713 \label{sec:hochschild}
   584 \input{text/hochschild}
   714 \input{text/hochschild}
   585 
   715 
   586 \section{Action of $C_*(\Diff(X))$}  \label{diffsect}
   716 \section{Action of $\CD{X}$}
       
   717 \label{sec:evaluation}
   587 
   718 
   588 Let $CD_*(X)$ denote $C_*(\Diff(X))$, the singular chain complex of
   719 Let $CD_*(X)$ denote $C_*(\Diff(X))$, the singular chain complex of
   589 the space of diffeomorphisms
   720 the space of diffeomorphisms
   590 of the $n$-manifold $X$ (fixed on $\bd X$).
   721 of the $n$-manifold $X$ (fixed on $\bd X$).
   591 For convenience, we will permit the singular cells generating $CD_*(X)$ to be more general
   722 For convenience, we will permit the singular cells generating $CD_*(X)$ to be more general
   662 Let $x \in CD_k(X)$ be a singular chain such that $\bd x$ is adapted to $\cU$.
   793 Let $x \in CD_k(X)$ be a singular chain such that $\bd x$ is adapted to $\cU$.
   663 Then $x$ is homotopic (rel boundary) to some $x' \in CD_k(X)$ which is adapted to $\cU$.
   794 Then $x$ is homotopic (rel boundary) to some $x' \in CD_k(X)$ which is adapted to $\cU$.
   664 Furthermore, one can choose the homotopy so that its support is equal to the support of $x$.
   795 Furthermore, one can choose the homotopy so that its support is equal to the support of $x$.
   665 \end{lemma}
   796 \end{lemma}
   666 
   797 
   667 The proof will be given in Section \ref{fam_diff_sect}.
   798 The proof will be given in Section \ref{sec:localising}.
   668 
   799 
   669 \medskip
   800 \medskip
   670 
   801 
   671 The strategy for the proof of Proposition \ref{CDprop} is as follows.
   802 The strategy for the proof of Proposition \ref{CDprop} is as follows.
   672 We will identify a subcomplex
   803 We will identify a subcomplex
   779 
   910 
   780 \medskip
   911 \medskip
   781 
   912 
   782 \nn{say something about associativity here}
   913 \nn{say something about associativity here}
   783 
   914 
   784 
   915 \section{Gluing}
   785 
   916 \label{sec:gluing}%
   786 
   917 
   787 \section{Families of Diffeomorphisms}  \label{fam_diff_sect}
   918 \subsection{`Topological' $A_\infty$ $n$-categories}
       
   919 \label{sec:topological-A-infty}%
       
   920 
       
   921 This section prepares the ground for establishing Property \ref{property:gluing} by defining the notion of a \emph{topological $A_\infty$
       
   922 $n$-category}. The main result of this section is
       
   923 
       
   924 \begin{thm}
       
   925 Topological $A_\infty$ $1$-categories are equivalent to `standard'
       
   926 $A_\infty$ $1$-categories.
       
   927 \end{thm}
       
   928 
       
   929 
       
   930 
       
   931 \nn{Need to let the input $n$-category $C$ be a graded thing (e.g. DG
       
   932 $n$-category or $A_\infty$ $n$-category). DG $n$-category case is pretty
       
   933 easy, I think, so maybe it should be done earlier??}
       
   934 
       
   935 \bigskip
       
   936 
       
   937 Outline:
       
   938 \begin{itemize}
       
   939 \item recall defs of $A_\infty$ category (1-category only), modules, (self-) tensor product.
       
   940 use graphical/tree point of view, rather than following Keller exactly
       
   941 \item define blob complex in $A_\infty$ case; fat mapping cones?  tree decoration?
       
   942 \item topological $A_\infty$ cat def (maybe this should go first); also modules gluing
       
   943 \item motivating example: $C_*(\maps(X, M))$
       
   944 \item maybe incorporate dual point of view (for $n=1$), where points get
       
   945 object labels and intervals get 1-morphism labels
       
   946 \end{itemize}
       
   947 
       
   948 
       
   949 \subsection{$A_\infty$ action on the boundary}
       
   950 
       
   951 Let $Y$ be an $n{-}1$-manifold.
       
   952 The collection of complexes $\{\bc_*(Y\times I; a, b)\}$, where $a, b \in \cC(Y)$ are boundary
       
   953 conditions on $\bd(Y\times I) = Y\times \{0\} \cup Y\times\{1\}$, has the structure
       
   954 of an $A_\infty$ category.
       
   955 
       
   956 Composition of morphisms (multiplication) depends of a choice of homeomorphism
       
   957 $I\cup I \cong I$.  Given this choice, gluing gives a map
       
   958 \eq{
       
   959     \bc_*(Y\times I; a, b) \otimes \bc_*(Y\times I; b, c) \to \bc_*(Y\times (I\cup I); a, c)
       
   960             \cong \bc_*(Y\times I; a, c)
       
   961 }
       
   962 Using (\ref{CDprop}) and the inclusion $\Diff(I) \sub \Diff(Y\times I)$ gives the various
       
   963 higher associators of the $A_\infty$ structure, more or less canonically.
       
   964 
       
   965 \nn{is this obvious?  does more need to be said?}
       
   966 
       
   967 Let $\cA(Y)$ denote the $A_\infty$ category $\bc_*(Y\times I; \cdot, \cdot)$.
       
   968 
       
   969 Similarly, if $Y \sub \bd X$, a choice of collaring homeomorphism
       
   970 $(Y\times I) \cup_Y X \cong X$ gives the collection of complexes $\bc_*(X; r, a)$
       
   971 (variable $a \in \cC(Y)$; fixed $r \in \cC(\bd X \setmin Y)$) the structure of a representation of the
       
   972 $A_\infty$ category $\{\bc_*(Y\times I; \cdot, \cdot)\}$.
       
   973 Again the higher associators come from the action of $\Diff(I)$ on a collar neighborhood
       
   974 of $Y$ in $X$.
       
   975 
       
   976 In the next section we use the above $A_\infty$ actions to state and prove
       
   977 a gluing theorem for the blob complexes of $n$-manifolds.
       
   978 
       
   979 
       
   980 \subsection{The gluing formula}
       
   981 
       
   982 Let $Y$ be an $n{-}1$-manifold and let $X$ be an $n$-manifold with a copy
       
   983 of $Y \du -Y$ contained in its boundary.
       
   984 Gluing the two copies of $Y$ together we obtain a new $n$-manifold $X\sgl$.
       
   985 We wish to describe the blob complex of $X\sgl$ in terms of the blob complex
       
   986 of $X$.
       
   987 More precisely, we want to describe $\bc_*(X\sgl; c\sgl)$,
       
   988 where $c\sgl \in \cC(\bd X\sgl)$,
       
   989 in terms of the collection $\{\bc_*(X; c, \cdot, \cdot)\}$, thought of as a representation
       
   990 of the $A_\infty$ category $\cA(Y\du-Y) \cong \cA(Y)\times \cA(Y)\op$.
       
   991 
       
   992 \begin{thm}
       
   993 $\bc_*(X\sgl; c\sgl)$ is quasi-isomorphic to the the self tensor product
       
   994 of $\{\bc_*(X; c, \cdot, \cdot)\}$ over $\cA(Y)$.
       
   995 \end{thm}
       
   996 
       
   997 The proof will occupy the remainder of this section.
       
   998 
       
   999 \nn{...}
       
  1000 
       
  1001 \bigskip
       
  1002 
       
  1003 \nn{need to define/recall def of (self) tensor product over an $A_\infty$ category}
       
  1004 
       
  1005 
       
  1006 
       
  1007 
       
  1008 \appendix
       
  1009 
       
  1010 \section{Families of Diffeomorphisms}  \label{sec:localising}
   788 
  1011 
   789 
  1012 
   790 Lo, the proof of Lemma (\ref{extension_lemma}):
  1013 Lo, the proof of Lemma (\ref{extension_lemma}):
   791 
  1014 
   792 \nn{should this be an appendix instead?}
  1015 \nn{should this be an appendix instead?}
   970 
  1193 
   971 \nn{this completes proof}
  1194 \nn{this completes proof}
   972 
  1195 
   973 \input{text/explicit.tex}
  1196 \input{text/explicit.tex}
   974 
  1197 
   975 
  1198 % ----------------------------------------------------------------
   976 \section{$A_\infty$ action on the boundary}
  1199 \newcommand{\urlprefix}{}
   977 
  1200 \bibliographystyle{gtart}
   978 Let $Y$ be an $n{-}1$-manifold.
  1201 %Included for winedt:
   979 The collection of complexes $\{\bc_*(Y\times I; a, b)\}$, where $a, b \in \cC(Y)$ are boundary
  1202 %input "bibliography/bibliography.bib"
   980 conditions on $\bd(Y\times I) = Y\times \{0\} \cup Y\times\{1\}$, has the structure
  1203 \bibliography{bibliography/bibliography}
   981 of an $A_\infty$ category.
  1204 % ----------------------------------------------------------------
   982 
  1205 
   983 Composition of morphisms (multiplication) depends of a choice of homeomorphism
  1206 This paper is available online at \arxiv{?????}, and at
   984 $I\cup I \cong I$.  Given this choice, gluing gives a map
  1207 \url{http://tqft.net/blobs}.
   985 \eq{
  1208 
   986     \bc_*(Y\times I; a, b) \otimes \bc_*(Y\times I; b, c) \to \bc_*(Y\times (I\cup I); a, c)
  1209 % A GTART necessity:
   987             \cong \bc_*(Y\times I; a, c)
  1210 % \Addresses
   988 }
  1211 % ----------------------------------------------------------------
   989 Using (\ref{CDprop}) and the inclusion $\Diff(I) \sub \Diff(Y\times I)$ gives the various
       
   990 higher associators of the $A_\infty$ structure, more or less canonically.
       
   991 
       
   992 \nn{is this obvious?  does more need to be said?}
       
   993 
       
   994 Let $\cA(Y)$ denote the $A_\infty$ category $\bc_*(Y\times I; \cdot, \cdot)$.
       
   995 
       
   996 Similarly, if $Y \sub \bd X$, a choice of collaring homeomorphism
       
   997 $(Y\times I) \cup_Y X \cong X$ gives the collection of complexes $\bc_*(X; r, a)$
       
   998 (variable $a \in \cC(Y)$; fixed $r \in \cC(\bd X \setmin Y)$) the structure of a representation of the
       
   999 $A_\infty$ category $\{\bc_*(Y\times I; \cdot, \cdot)\}$.
       
  1000 Again the higher associators come from the action of $\Diff(I)$ on a collar neighborhood
       
  1001 of $Y$ in $X$.
       
  1002 
       
  1003 In the next section we use the above $A_\infty$ actions to state and prove
       
  1004 a gluing theorem for the blob complexes of $n$-manifolds.
       
  1005 
       
  1006 
       
  1007 
       
  1008 
       
  1009 
       
  1010 
       
  1011 
       
  1012 \section{Gluing}  \label{gluesect}
       
  1013 
       
  1014 Let $Y$ be an $n{-}1$-manifold and let $X$ be an $n$-manifold with a copy
       
  1015 of $Y \du -Y$ contained in its boundary.
       
  1016 Gluing the two copies of $Y$ together we obtain a new $n$-manifold $X\sgl$.
       
  1017 We wish to describe the blob complex of $X\sgl$ in terms of the blob complex
       
  1018 of $X$.
       
  1019 More precisely, we want to describe $\bc_*(X\sgl; c\sgl)$,
       
  1020 where $c\sgl \in \cC(\bd X\sgl)$,
       
  1021 in terms of the collection $\{\bc_*(X; c, \cdot, \cdot)\}$, thought of as a representation
       
  1022 of the $A_\infty$ category $\cA(Y\du-Y) \cong \cA(Y)\times \cA(Y)\op$.
       
  1023 
       
  1024 \begin{thm}
       
  1025 $\bc_*(X\sgl; c\sgl)$ is quasi-isomorphic to the the self tensor product
       
  1026 of $\{\bc_*(X; c, \cdot, \cdot)\}$ over $\cA(Y)$.
       
  1027 \end{thm}
       
  1028 
       
  1029 The proof will occupy the remainder of this section.
       
  1030 
       
  1031 \nn{...}
       
  1032 
       
  1033 \bigskip
       
  1034 
       
  1035 \nn{need to define/recall def of (self) tensor product over an $A_\infty$ category}
       
  1036 
       
  1037 
       
  1038 
       
  1039 
       
  1040 
       
  1041 \section{Extension to ...}
       
  1042 
       
  1043 \nn{Need to let the input $n$-category $C$ be a graded thing
       
  1044 (e.g. DG $n$-category or $A_\infty$ $n$-category).
       
  1045 DG $n$-category case is pretty easy, I think, so maybe it should be done earlier??
       
  1046 Also, $A_\infty$ stuff (this section) should go before gluing section.}
       
  1047 
       
  1048 \bigskip
       
  1049 
       
  1050 Outline:
       
  1051 \begin{itemize}
       
  1052 \item recall defs of $A_\infty$ category (1-category only), modules, (self-) tensor product.
       
  1053 use graphical/tree point of view, rather than following Keller exactly
       
  1054 \item define blob complex in $A_\infty$ case; fat mapping cones?  tree decoration?
       
  1055 \item topological $A_\infty$ cat def (maybe this should go first); also modules gluing
       
  1056 \item motivating example: $C_*(\maps(X, M))$
       
  1057 \item maybe incorporate dual point of view (for $n=1$), where points get
       
  1058 object labels and intervals get 1-morphism labels
       
  1059 \end{itemize}
       
  1060 
       
  1061 
       
  1062 
       
  1063 
       
  1064 
       
  1065 
       
  1066 
       
  1067 
       
  1068 
       
  1069 
       
  1070 
       
  1071 \section{What else?...}
       
  1072 
       
  1073 \begin{itemize}
       
  1074 \item Derive Hochschild standard results from blob point of view?
       
  1075 \item $n=2$ examples
       
  1076 \item Kh
       
  1077 \item dimension $n+1$ (generalized Deligne conjecture?)
       
  1078 \item should be clear about PL vs Diff; probably PL is better
       
  1079 (or maybe not)
       
  1080 \item say what we mean by $n$-category, $A_\infty$ or $E_\infty$ $n$-category
       
  1081 \item something about higher derived coend things (derived 2-coend, e.g.)
       
  1082 \end{itemize}
       
  1083 
       
  1084 
       
  1085 
       
  1086 
       
  1087 
       
  1088 \end{document}
  1212 \end{document}
       
  1213 % ----------------------------------------------------------------
       
  1214 
  1089 
  1215 
  1090 
  1216 
  1091 
  1217 
  1092 %Recall that for $n$-category picture fields there is an evaluation map
  1218 %Recall that for $n$-category picture fields there is an evaluation map
  1093 %$m: \bc_0(B^n; c, c') \to \mor(c, c')$.
  1219 %$m: \bc_0(B^n; c, c') \to \mor(c, c')$.