text/intro.tex
changeset 338 adc0780aa5e7
parent 332 160ca7078ae9
child 340 f7da004e1f14
equal deleted inserted replaced
337:f77cb464248e 338:adc0780aa5e7
   215 \begin{equation*}
   215 \begin{equation*}
   216 H_0(\bc_*^{\cC}(X)) \iso A^{\cC}(X)
   216 H_0(\bc_*^{\cC}(X)) \iso A^{\cC}(X)
   217 \end{equation*}
   217 \end{equation*}
   218 \end{property}
   218 \end{property}
   219 
   219 
       
   220 \todo{Somehow, the Hochschild homology thing isn't a "property". Let's move it and call it a theorem? -S}
   220 \begin{property}[Hochschild homology when $X=S^1$]
   221 \begin{property}[Hochschild homology when $X=S^1$]
   221 \label{property:hochschild}%
   222 \label{property:hochschild}%
   222 The blob complex for a $1$-category $\cC$ on the circle is
   223 The blob complex for a $1$-category $\cC$ on the circle is
   223 quasi-isomorphic to the Hochschild complex.
   224 quasi-isomorphic to the Hochschild complex.
   224 \begin{equation*}
   225 \begin{equation*}
   268 In \S \ref{sec:ncats} we introduce the notion of topological $n$-categories, from which we can construct systems of fields. Below, we talk about the blob complex associated to a topological $n$-category, implicitly passing first to the system of fields. Further, in \S \ref{sec:ncats} we also have the notion of an $A_\infty$ $n$-category.
   269 In \S \ref{sec:ncats} we introduce the notion of topological $n$-categories, from which we can construct systems of fields. Below, we talk about the blob complex associated to a topological $n$-category, implicitly passing first to the system of fields. Further, in \S \ref{sec:ncats} we also have the notion of an $A_\infty$ $n$-category.
   269 
   270 
   270 \begin{property}[Blob complexes of (products with) balls form an $A_\infty$ $n$-category]
   271 \begin{property}[Blob complexes of (products with) balls form an $A_\infty$ $n$-category]
   271 \label{property:blobs-ainfty}
   272 \label{property:blobs-ainfty}
   272 Let $\cC$ be  a topological $n$-category.  Let $Y$ be an $n{-}k$-manifold. 
   273 Let $\cC$ be  a topological $n$-category.  Let $Y$ be an $n{-}k$-manifold. 
   273 There is an $A_\infty$ $k$-category $A_*(Y, \cC)$, defined on each $m$-ball $D$, for $0 \leq m < k$, to be the set $$A_*(Y,\cC)(D) = A^\cC(Y \times D)$$ and on $k$-balls $D$ to be the set $$A_*(Y, \cC)(D) = \bc_*(Y \times D, \cC).$$ (When $m=k$ the subsets with fixed boundary conditions form a chain complex.) These sets have the structure of an $A_\infty$ $k$-category, with compositions coming from the gluing map in Property \ref{property:gluing-map} and with the action of families of homeomorphisms given in Property \ref{property:evaluation}.
   274 There is an $A_\infty$ $k$-category $\bc_*(Y;\cC)$, defined on each $m$-ball $D$, for $0 \leq m < k$, to be the set $$\bc_*(Y;\cC)(D) = \cC(Y \times D)$$ and on $k$-balls $D$ to be the set $$\bc_*(Y;\cC)(D) = \bc_*(Y \times D; \cC).$$ (When $m=k$ the subsets with fixed boundary conditions form a chain complex.) These sets have the structure of an $A_\infty$ $k$-category, with compositions coming from the gluing map in Property \ref{property:gluing-map} and with the action of families of homeomorphisms given in Property \ref{property:evaluation}.
   274 \end{property}
   275 \end{property}
   275 \begin{rem}
   276 \begin{rem}
   276 Perhaps the most interesting case is when $Y$ is just a point; then we have a way of building an $A_\infty$ $n$-category from a topological $n$-category. We think of this $A_\infty$ $n$-category as a free resolution.
   277 Perhaps the most interesting case is when $Y$ is just a point; then we have a way of building an $A_\infty$ $n$-category from a topological $n$-category. We think of this $A_\infty$ $n$-category as a free resolution.
   277 \end{rem}
   278 \end{rem}
   278 
   279 
   279 There is a version of the blob complex for $\cC$ an $A_\infty$ $n$-category
   280 There is a version of the blob complex for $\cC$ an $A_\infty$ $n$-category
   280 instead of a topological $n$-category; this is described in \S \ref{sec:ainfblob}.
   281 instead of a topological $n$-category; this is described in \S \ref{sec:ainfblob}. The definition is in fact simpler, almost tautological, and we use a different notation, $\cl{\cC}(M)$.
   281 
   282 
   282 \begin{property}[Product formula]
   283 \begin{property}[Product formula]
   283 \label{property:product}
   284 \label{property:product}
   284 Let $W$ be a $k$-manifold and $Y$ be an $n-k$ manifold. Let $\cC$ be an $n$-category.
   285 Let $W$ be a $k$-manifold and $Y$ be an $n-k$ manifold. Let $\cC$ be an $n$-category.
   285 Let $A_*(Y,\cC)$ be the $A_\infty$ $k$-category associated to $Y$ via blob homology (see Property \ref{property:blobs-ainfty}).
   286 Let $\bc_*(Y;\cC)$ be the $A_\infty$ $k$-category associated to $Y$ via blob homology (see Property \ref{property:blobs-ainfty}).
   286 Then
   287 Then
   287 \[
   288 \[
   288 	\bc_*(Y\times W, \cC) \simeq \bc_*(W, A_*(Y,\cC)) .
   289 	\bc_*(Y\times W; \cC) \simeq \cl{\bc_*(Y;\cC)}(W).
   289 \]
   290 \]
   290 Note on the right hand side we have the version of the blob complex for $A_\infty$ $n$-categories.
   291 \end{property}
   291 \end{property}
   292 We also give a generalization of this statement for arbitrary fibre bundles, in \S \ref{moddecss}, and a sketch of a statement for arbitrary maps.
   292 It seems reasonable to expect a generalization describing an arbitrary fibre bundle. See in particular \S \ref{moddecss} for the framework for such a statement.
   293 
       
   294 Fix a topological $n$-category $\cC$, which we'll omit from the notation. Recall that for any $(n-1)$-manifold $Y$, the blob complex $\bc_*(Y)$ is naturally an $A_\infty$ category. (See Appendix \ref{sec:comparing-A-infty} for the translation between topological $A_\infty$ $1$-categories and the usual algebraic notion of an $A_\infty$ category.)
   293 
   295 
   294 \begin{property}[Gluing formula]
   296 \begin{property}[Gluing formula]
   295 \label{property:gluing}%
   297 \label{property:gluing}%
   296 \mbox{}% <-- gets the indenting right
   298 \mbox{}% <-- gets the indenting right
   297 \begin{itemize}
   299 \begin{itemize}
   298 \item For any $(n-1)$-manifold $Y$, the blob complex of $Y \times I$ is
       
   299 naturally an $A_\infty$ category. % We'll write $\bc_*(Y)$ for $\bc_*(Y \times I)$ below.
       
   300 
       
   301 \item For any $n$-manifold $X$, with $Y$ a codimension $0$-submanifold of its boundary, the blob complex of $X$ is naturally an
   300 \item For any $n$-manifold $X$, with $Y$ a codimension $0$-submanifold of its boundary, the blob complex of $X$ is naturally an
   302 $A_\infty$ module for $\bc_*(Y \times I)$.
   301 $A_\infty$ module for $\bc_*(Y)$.
   303 
   302 
   304 \item For any $n$-manifold $X_\text{glued} = X_\text{cut} \bigcup_Y \selfarrow$, the blob complex $\bc_*(X_\text{glued})$ is the $A_\infty$ self-tensor product of
   303 \item For any $n$-manifold $X_\text{glued} = X_\text{cut} \bigcup_Y \selfarrow$, the blob complex $\bc_*(X_\text{glued})$ is the $A_\infty$ self-tensor product of
   305 $\bc_*(X_\text{cut})$ as an $\bc_*(Y \times I)$-bimodule:
   304 $\bc_*(X_\text{cut})$ as an $\bc_*(Y)$-bimodule:
   306 \begin{equation*}
   305 \begin{equation*}
   307 \bc_*(X_\text{glued}) \simeq \bc_*(X_\text{cut}) \Tensor^{A_\infty}_{\mathclap{\bc_*(Y \times I)}} \selfarrow
   306 \bc_*(X_\text{glued}) \simeq \bc_*(X_\text{cut}) \Tensor^{A_\infty}_{\mathclap{\bc_*(Y)}} \selfarrow
   308 \end{equation*}
   307 \end{equation*}
   309 \end{itemize}
   308 \end{itemize}
   310 \end{property}
   309 \end{property}
   311 
   310 
   312 Finally, we state two more properties, which we will not prove in this paper.
   311 Finally, we prove two theorems which we consider as applications.
   313 \nn{revise this; expect that we will prove these in the paper}
   312 
   314 
   313 \begin{thm}[Mapping spaces]
   315 \begin{property}[Mapping spaces]
       
   316 Let $\pi^\infty_{\le n}(T)$ denote the $A_\infty$ $n$-category based on maps 
   314 Let $\pi^\infty_{\le n}(T)$ denote the $A_\infty$ $n$-category based on maps 
   317 $B^n \to T$.
   315 $B^n \to T$.
   318 (The case $n=1$ is the usual $A_\infty$-category of paths in $T$.)
   316 (The case $n=1$ is the usual $A_\infty$-category of paths in $T$.)
   319 Then 
   317 Then 
   320 $$\bc_*(X, \pi^\infty_{\le n}(T)) \simeq \CM{X}{T}.$$
   318 $$\bc_*(X, \pi^\infty_{\le n}(T)) \simeq \CM{X}{T}.$$
   321 \end{property}
   319 \end{thm}
   322 
   320 
   323 This says that we can recover the (homotopic) space of maps to $T$ via blob homology from local data.
   321 This says that we can recover the (homotopic) space of maps to $T$ via blob homology from local data.
   324 
   322 
   325 \begin{property}[Higher dimensional Deligne conjecture]
   323 \begin{thm}[Higher dimensional Deligne conjecture]
   326 \label{property:deligne}
   324 \label{thm:deligne}
   327 The singular chains of the $n$-dimensional fat graph operad act on blob cochains.
   325 The singular chains of the $n$-dimensional fat graph operad act on blob cochains.
   328 \end{property}
   326 \end{thm}
   329 See \S \ref{sec:deligne} for an explanation of the terms appearing here. The proof will appear elsewhere.
   327 See \S \ref{sec:deligne} for a full explanation of the statement, and an outline of the proof.
   330 
   328 
   331 Properties \ref{property:functoriality} and \ref{property:skein-modules} will be immediate from the definition given in
   329 Properties \ref{property:functoriality} and \ref{property:skein-modules} will be immediate from the definition given in
   332 \S \ref{sec:blob-definition}, and we'll recall them at the appropriate points there.
   330 \S \ref{sec:blob-definition}, and we'll recall them at the appropriate points there.
   333 Properties \ref{property:disjoint-union}, \ref{property:gluing-map} and \ref{property:contractibility} are established in \S \ref{sec:basic-properties}.
   331 Properties \ref{property:disjoint-union}, \ref{property:gluing-map} and \ref{property:contractibility} are established in \S \ref{sec:basic-properties}.
   334 Property \ref{property:hochschild} is established in \S \ref{sec:hochschild}, Property \ref{property:evaluation} in \S \ref{sec:evaluation}, Property \ref{property:blobs-ainfty} as Example \ref{ex:blob-complexes-of-balls} in \S \ref{sec:ncats},
   332 Property \ref{property:hochschild} is established in \S \ref{sec:hochschild}, Property \ref{property:evaluation} in \S \ref{sec:evaluation}, Property \ref{property:blobs-ainfty} as Example \ref{ex:blob-complexes-of-balls} in \S \ref{sec:ncats},
   350 \subsection{Thanks and acknowledgements}
   348 \subsection{Thanks and acknowledgements}
   351 We'd like to thank David Ben-Zvi, Kevin Costello, Chris Douglas,
   349 We'd like to thank David Ben-Zvi, Kevin Costello, Chris Douglas,
   352 Michael Freedman, Vaughan Jones, Justin Roberts, Chris Schommer-Pries, Peter Teichner \nn{and who else?} for many interesting and useful conversations. 
   350 Michael Freedman, Vaughan Jones, Justin Roberts, Chris Schommer-Pries, Peter Teichner \nn{and who else?} for many interesting and useful conversations. 
   353 During this work, Kevin Walker has been at Microsoft Station Q, and Scott Morrison has been at Microsoft Station Q and the Miller Institute for Basic Research at UC Berkeley.
   351 During this work, Kevin Walker has been at Microsoft Station Q, and Scott Morrison has been at Microsoft Station Q and the Miller Institute for Basic Research at UC Berkeley.
   354 
   352 
   355 
       
   356 \medskip\hrule\medskip
       
   357 
       
   358 Still to do:
       
   359 \begin{itemize}
       
   360 \item say something about starting with semisimple n-cat (trivial?? not trivial?)
       
   361 \end{itemize}
       
   362