text/a_inf_blob.tex
changeset 530 b236746e8e4d
parent 529 8e055b7c0768
child 538 123a8b83e02c
equal deleted inserted replaced
529:8e055b7c0768 530:b236746e8e4d
   111 Then 1-simplices associated to the four anti-refinements
   111 Then 1-simplices associated to the four anti-refinements
   112 $KL\to K$, $KL\to L$, $K'L\to L$ and $K'L\to K'$
   112 $KL\to K$, $KL\to L$, $K'L\to L$ and $K'L\to K'$
   113 give the desired chain connecting $(a, K)$ and $(a, K')$
   113 give the desired chain connecting $(a, K)$ and $(a, K')$
   114 (see Figure \ref{zzz4}).
   114 (see Figure \ref{zzz4}).
   115 
   115 
   116 \begin{figure}[!ht]
   116 \begin{figure}[t] \centering
   117 \begin{equation*}
       
   118 \begin{tikzpicture}
   117 \begin{tikzpicture}
   119 \foreach \x/\label in {-3/K, 0/L, 3/K'} {
   118 \foreach \x/\label in {-3/K, 0/L, 3/K'} {
   120 	\node(\label) at (\x,0) {$\label$};
   119 	\node(\label) at (\x,0) {$\label$};
   121 }
   120 }
   122 \foreach \x/\la/\lb in {-1.5/K/L, 1.5/K'/L} {
   121 \foreach \x/\la/\lb in {-1.5/K/L, 1.5/K'/L} {
   123 	\node(\la \lb) at (\x,-1.5) {$\la \lb$};
   122 	\node(\la \lb) at (\x,-1.5) {$\la \lb$};
   124 	\draw[->] (\la \lb) -- (\la);
   123 	\draw[->] (\la \lb) -- (\la);
   125 	\draw[->] (\la \lb) -- (\lb); 
   124 	\draw[->] (\la \lb) -- (\lb); 
   126 }
   125 }
   127 \end{tikzpicture}
   126 \end{tikzpicture}
   128 \end{equation*}
       
   129 \caption{Connecting $K$ and $K'$ via $L$}
   127 \caption{Connecting $K$ and $K'$ via $L$}
   130 \label{zzz4}
   128 \label{zzz4}
   131 \end{figure}
   129 \end{figure}
   132 
   130 
   133 Consider a different choice of decomposition $L'$ in place of $L$ above.
   131 Consider a different choice of decomposition $L'$ in place of $L$ above.
   137 $K$, $KL$, $L$, $K'L$, $K'$, $K'L'$, $L'$ and $KL'$.
   135 $K$, $KL$, $L$, $K'L$, $K'$, $K'L'$, $L'$ and $KL'$.
   138 (We also also require that $KLM$ antirefines to $KM$, etc.)
   136 (We also also require that $KLM$ antirefines to $KM$, etc.)
   139 Then we have 2-simplices, as shown in Figure \ref{zzz5}, which do the trick.
   137 Then we have 2-simplices, as shown in Figure \ref{zzz5}, which do the trick.
   140 (Each small triangle in Figure \ref{zzz5} can be filled with a 2-simplex.)
   138 (Each small triangle in Figure \ref{zzz5} can be filled with a 2-simplex.)
   141 
   139 
   142 \begin{figure}[!ht]
   140 \begin{figure}[t] \centering
   143 %\begin{equation*}
       
   144 %\mathfig{1.0}{tempkw/zz5}
       
   145 %\end{equation*}
       
   146 \begin{equation*}
       
   147 \begin{tikzpicture}
   141 \begin{tikzpicture}
   148 \node(M) at (0,0) {$M$};
   142 \node(M) at (0,0) {$M$};
   149 \foreach \angle/\label in {0/K', 45/K'L, 90/L, 135/KL, 180/K, 225/KL', 270/L', 315/K'L'} {
   143 \foreach \angle/\label in {0/K', 45/K'L, 90/L, 135/KL, 180/K, 225/KL', 270/L', 315/K'L'} {
   150 	\node(\label) at (\angle:4) {$\label$};
   144 	\node(\label) at (\angle:4) {$\label$};
   151 }
   145 }
   172 \draw[->] (K'L) to[bend left=10] (K');
   166 \draw[->] (K'L) to[bend left=10] (K');
   173 \draw[->] (K'L) to[bend right=10] (L);
   167 \draw[->] (K'L) to[bend right=10] (L);
   174 \draw[->] (KL) to[bend right=10] (K);
   168 \draw[->] (KL) to[bend right=10] (K);
   175 \draw[->] (KL) to[bend left=10] (L);
   169 \draw[->] (KL) to[bend left=10] (L);
   176 \end{tikzpicture}
   170 \end{tikzpicture}
   177 \end{equation*}
       
   178 \caption{Filling in $K$-$KL$-$L$-$K'L$-$K'$-$K'L'$-$L'$-$KL'$-$K$}
   171 \caption{Filling in $K$-$KL$-$L$-$K'L$-$K'$-$K'L'$-$L'$-$KL'$-$K$}
   179 \label{zzz5}
   172 \label{zzz5}
   180 \end{figure}
   173 \end{figure}
   181 
   174 
   182 Continuing in this way we see that $D(a)$ is acyclic.
   175 Continuing in this way we see that $D(a)$ is acyclic.