text/appendixes/comparing_defs.tex
changeset 530 b236746e8e4d
parent 529 8e055b7c0768
child 680 0591d017e698
equal deleted inserted replaced
529:8e055b7c0768 530:b236746e8e4d
   135 on $C^2$ (Figure \ref{fzo1}).
   135 on $C^2$ (Figure \ref{fzo1}).
   136 Isotopy invariance implies that this is associative.
   136 Isotopy invariance implies that this is associative.
   137 We will define a ``horizontal" composition later.
   137 We will define a ``horizontal" composition later.
   138 
   138 
   139 \begin{figure}[t]
   139 \begin{figure}[t]
   140 \begin{center}
   140 \centering
   141 \begin{tikzpicture}
   141 \begin{tikzpicture}
   142 
   142 
   143 \newcommand{\vertex}{node[circle,fill=black,inner sep=1pt] {}}
   143 \newcommand{\vertex}{node[circle,fill=black,inner sep=1pt] {}}
   144 \newcommand{\nsep}{1.8}
   144 \newcommand{\nsep}{1.8}
   145 
   145 
   181 };
   181 };
   182 
   182 
   183 \draw[->, thick, blue!50!green] (A) -- node[black, above] {$\cong$} (B);
   183 \draw[->, thick, blue!50!green] (A) -- node[black, above] {$\cong$} (B);
   184 
   184 
   185 \end{tikzpicture}
   185 \end{tikzpicture}
   186 \end{center}
       
   187 \caption{Vertical composition of 2-morphisms}
   186 \caption{Vertical composition of 2-morphisms}
   188 \label{fzo1}
   187 \label{fzo1}
   189 \end{figure}
   188 \end{figure}
   190 
   189 
   191 Given $a\in C^1$, define $\id_a = a\times I \in C^2$ (pinched boundary).
   190 Given $a\in C^1$, define $\id_a = a\times I \in C^2$ (pinched boundary).
   202 
   201 
   203 Let $a: y\to x$ be a 1-morphism.
   202 Let $a: y\to x$ be a 1-morphism.
   204 Define 2-morphsims $a \to a\bullet \id_x$ and $a\bullet \id_x \to a$
   203 Define 2-morphsims $a \to a\bullet \id_x$ and $a\bullet \id_x \to a$
   205 as shown in Figure \ref{fzo2}.
   204 as shown in Figure \ref{fzo2}.
   206 \begin{figure}[t]
   205 \begin{figure}[t]
   207 \begin{center}
   206 \centering
   208 \begin{tikzpicture}
   207 \begin{tikzpicture}
   209 \newcommand{\rr}{6}
   208 \newcommand{\rr}{6}
   210 \newcommand{\vertex}{node[circle,fill=black,inner sep=1pt] {}}
   209 \newcommand{\vertex}{node[circle,fill=black,inner sep=1pt] {}}
   211 \newcommand{\namedvertex}[1]{node[circle,fill=black,inner sep=1pt] (#1) {}}
   210 \newcommand{\namedvertex}[1]{node[circle,fill=black,inner sep=1pt] (#1) {}}
   212 
   211 
   272 };
   271 };
   273 
   272 
   274 \draw[->] (A) -- (B);
   273 \draw[->] (A) -- (B);
   275 \draw[->] (A) -- (C);
   274 \draw[->] (A) -- (C);
   276 \end{tikzpicture}
   275 \end{tikzpicture}
   277 \end{center}
       
   278 \caption{Producing weak identities from half pinched products}
   276 \caption{Producing weak identities from half pinched products}
   279 \label{fzo2}
   277 \label{fzo2}
   280 \end{figure}
   278 \end{figure}
   281 As suggested by the figure, these are two different reparameterizations
   279 As suggested by the figure, these are two different reparameterizations
   282 of a half-pinched version of $a\times I$.
   280 of a half-pinched version of $a\times I$.
   283 We must show that the two compositions of these two maps give the identity 2-morphisms
   281 We must show that the two compositions of these two maps give the identity 2-morphisms
   284 on $a$ and $a\bullet \id_x$, as defined above.
   282 on $a$ and $a\bullet \id_x$, as defined above.
   285 Figure \ref{fzo3} shows one case.
   283 Figure \ref{fzo3} shows one case.
   286 \begin{figure}[t]
   284 \begin{figure}[t]
   287 \begin{center}
   285 \centering
   288 \begin{tikzpicture}
   286 \begin{tikzpicture}
   289 
   287 
   290 \newcommand{\vertex}{node[circle,fill=black,inner sep=1pt] {}}
   288 \newcommand{\vertex}{node[circle,fill=black,inner sep=1pt] {}}
   291 \newcommand{\nsep}{1.8}
   289 \newcommand{\nsep}{1.8}
   292 
   290 
   398 
   396 
   399 \draw[->, thick, blue!50!green] (A) -- (B);
   397 \draw[->, thick, blue!50!green] (A) -- (B);
   400 \draw[->, thick, blue!50!green] (B) -- node[black, above] {$=$} (C);
   398 \draw[->, thick, blue!50!green] (B) -- node[black, above] {$=$} (C);
   401 
   399 
   402 \end{tikzpicture}
   400 \end{tikzpicture}
   403 \end{center}
       
   404 \caption{Composition of weak identities, 1}
   401 \caption{Composition of weak identities, 1}
   405 \label{fzo3}
   402 \label{fzo3}
   406 \end{figure}
   403 \end{figure}
   407 In the first step we have inserted a copy of $(x\times I)\times I$.
   404 In the first step we have inserted a copy of $(x\times I)\times I$.
   408 Figure \ref{fzo4} shows the other case.
   405 Figure \ref{fzo4} shows the other case.
   409 \begin{figure}[t]
   406 \begin{figure}[t]
   410 \begin{center}
   407 \centering
   411 \begin{tikzpicture}
   408 \begin{tikzpicture}
   412 
   409 
   413 \newcommand{\vertex}{node[circle,fill=black,inner sep=1pt] {}}
   410 \newcommand{\vertex}{node[circle,fill=black,inner sep=1pt] {}}
   414 \newcommand{\nsep}{1.8}
   411 \newcommand{\nsep}{1.8}
   415 
   412 
   500 
   497 
   501 \draw[->, thick, blue!50!green] (A) -- (B);
   498 \draw[->, thick, blue!50!green] (A) -- (B);
   502 \draw[->, thick, blue!50!green] ($(B) + (1,0)$) -- node[black, above] {$=$} (C);
   499 \draw[->, thick, blue!50!green] ($(B) + (1,0)$) -- node[black, above] {$=$} (C);
   503 
   500 
   504 \end{tikzpicture}
   501 \end{tikzpicture}
   505 \end{center}
       
   506 \caption{Composition of weak identities, 2}
   502 \caption{Composition of weak identities, 2}
   507 \label{fzo4}
   503 \label{fzo4}
   508 \end{figure}
   504 \end{figure}
   509 We identify a product region and remove it.
   505 We identify a product region and remove it.
   510 
   506